# Modal Logic: Overview

# Cláudia Nalon

Department of Computer Science University of Brasília

LMU, The Modal Logic Sessions

# The Basics

#### The last session

- Modal logics: syntax and semantics
- Invariance results: for K<sub>n</sub>, the class of models is restricted to finite trees.
- Decidability: PSPACE-complete

# Calculi for Modal Logics

• A calculus for a logic *L* is a pair  $\langle \mathcal{A}, \mathcal{R} \rangle_L$ , where  $\mathcal{A} \subseteq \mathsf{WFF}_L$  and  $\mathcal{R} \subseteq (2^{\mathsf{WFF}_L} \times \mathsf{WFF}_L)$ .

- A calculus for a logic *L* is a pair  $\langle \mathcal{A}, \mathcal{R} \rangle_L$ , where  $\mathcal{A} \subseteq \mathsf{WFF}_L$  and  $\mathcal{R} \subseteq (2^{\mathsf{WFF}_L} \times \mathsf{WFF}_L)$ .
- Let φ ∈ WFF<sub>L</sub>. Let C = ⟨A, R⟩<sub>L</sub> be a calculus. A proof for φ is a sequence of formulae φ<sub>0</sub>, φ<sub>1</sub>,..., φ<sub>n</sub>, φ<sub>i</sub> ∈ WFF<sub>L</sub>, 1 ≤ i ≤ n, where φ = φ<sub>n</sub> and, for each φ<sub>i</sub>, φ<sub>i</sub> ∈ A or was obtained from {φ<sub>0</sub>,..., φ<sub>i-1</sub>} by an application of a rule in R. If there is a proof for φ, then φ is a theorem.

- A calculus for a logic *L* is a pair  $\langle \mathcal{A}, \mathcal{R} \rangle_L$ , where  $\mathcal{A} \subseteq \mathsf{WFF}_L$  and  $\mathcal{R} \subseteq (2^{\mathsf{WFF}_L} \times \mathsf{WFF}_L)$ .
- Let φ ∈ WFF<sub>L</sub>. Let C = ⟨A, R⟩<sub>L</sub> be a calculus. A proof for φ is a sequence of formulae φ<sub>0</sub>, φ<sub>1</sub>,..., φ<sub>n</sub>, φ<sub>i</sub> ∈ WFF<sub>L</sub>, 1 ≤ i ≤ n, where φ = φ<sub>n</sub> and, for each φ<sub>i</sub>, φ<sub>i</sub> ∈ A or was obtained from {φ<sub>0</sub>,..., φ<sub>i-1</sub>} by an application of a rule in R. If there is a proof for φ, then φ is a theorem. Notation: ⊢<sub>C</sub> φ.

- A calculus for a logic *L* is a pair  $\langle \mathcal{A}, \mathcal{R} \rangle_L$ , where  $\mathcal{A} \subseteq \mathsf{WFF}_L$  and  $\mathcal{R} \subseteq (2^{\mathsf{WFF}_L} \times \mathsf{WFF}_L)$ .
- Let φ ∈ WFF<sub>L</sub>. Let C = ⟨A, R⟩<sub>L</sub> be a calculus. A proof for φ is a sequence of formulae φ<sub>0</sub>, φ<sub>1</sub>,..., φ<sub>n</sub>, φ<sub>i</sub> ∈ WFF<sub>L</sub>, 1 ≤ i ≤ n, where φ = φ<sub>n</sub> and, for each φ<sub>i</sub>, φ<sub>i</sub> ∈ A or was obtained from {φ<sub>0</sub>,..., φ<sub>i-1</sub>} by an application of a rule in R. If there is a proof for φ, then φ is a theorem. Notation: ⊢<sub>C</sub> φ.
- Let φ ∈ WFF<sub>L</sub> and Γ ⊆ WFF<sub>L</sub>. Let C = ⟨A, R⟩<sub>L</sub> be a calculus. A proof for φ from Γ is a sequence of formulae φ<sub>0</sub>, φ<sub>1</sub>,..., φ<sub>n</sub>, φ<sub>i</sub> ∈ WFF<sub>L</sub>, 1 ≤ i ≤ n, where φ = φ<sub>n</sub> and, for each φ<sub>i</sub>, φ<sub>i</sub> ∈ A ∪ Γ or was obtained from {φ<sub>0</sub>,..., φ<sub>i-1</sub>} by an application of a rule in R. If there is a proof for φ from Γ, then φ is a demonstration.

- A calculus for a logic *L* is a pair  $\langle \mathcal{A}, \mathcal{R} \rangle_L$ , where  $\mathcal{A} \subseteq \mathsf{WFF}_L$  and  $\mathcal{R} \subseteq (2^{\mathsf{WFF}_L} \times \mathsf{WFF}_L)$ .
- Let φ ∈ WFF<sub>L</sub>. Let C = ⟨A, R⟩<sub>L</sub> be a calculus. A proof for φ is a sequence of formulae φ<sub>0</sub>, φ<sub>1</sub>,..., φ<sub>n</sub>, φ<sub>i</sub> ∈ WFF<sub>L</sub>, 1 ≤ i ≤ n, where φ = φ<sub>n</sub> and, for each φ<sub>i</sub>, φ<sub>i</sub> ∈ A or was obtained from {φ<sub>0</sub>,..., φ<sub>i-1</sub>} by an application of a rule in R. If there is a proof for φ, then φ is a theorem. Notation: ⊢<sub>C</sub> φ.
- Let φ ∈ WFF<sub>L</sub> and Γ ⊆ WFF<sub>L</sub>. Let C = ⟨A, R⟩<sub>L</sub> be a calculus. A proof for φ from Γ is a sequence of formulae φ<sub>0</sub>, φ<sub>1</sub>,..., φ<sub>n</sub>, φ<sub>i</sub> ∈ WFF<sub>L</sub>, 1 ≤ i ≤ n, where φ = φ<sub>n</sub> and, for each φ<sub>i</sub>, φ<sub>i</sub> ∈ A ∪ Γ or was obtained from {φ<sub>0</sub>,..., φ<sub>i-1</sub>} by an application of a rule in R. If there is a proof for φ from Γ, then φ is a demonstration. Notation: Γ ⊢<sub>C</sub> φ.

• Soundness: if  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then  $\Gamma \models_L \varphi$ .

- Soundness: if  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then  $\Gamma \models_L \varphi$ .
- Completeness: if  $\Gamma \models_L \varphi$ , then  $\Gamma \vdash_{\mathcal{C}} \varphi$ .

- Soundness: if  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then  $\Gamma \models_L \varphi$ .
- Completeness: if  $\Gamma \models_L \varphi$ , then  $\Gamma \vdash_{\mathcal{C}} \varphi$ .
- Compactness: if  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then there is  $\Gamma'$ , where  $\Gamma'$  is finite and  $\Gamma' \vdash_{\mathcal{C}} \varphi$ .

- Soundness: if  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then  $\Gamma \models_L \varphi$ .
- Completeness: if  $\Gamma \models_L \varphi$ , then  $\Gamma \vdash_{\mathcal{C}} \varphi$ .
- Compactness: if  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then there is  $\Gamma'$ , where  $\Gamma'$  is finite and  $\Gamma' \vdash_{\mathcal{C}} \varphi$ .
- Deduction theorem: let  $\Gamma = \{\gamma_0, \ldots, \gamma_i\}$  for some  $i \in \mathbb{N}$ . If  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then  $\vdash_{\mathcal{C}} \gamma_0 \rightarrow (\ldots \rightarrow (\gamma_i \rightarrow \varphi))$ .

- Soundness: if  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then  $\Gamma \models_L \varphi$ .
- Completeness: if  $\Gamma \models_L \varphi$ , then  $\Gamma \vdash_{\mathcal{C}} \varphi$ .
- Compactness: if  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then there is  $\Gamma'$ , where  $\Gamma'$  is finite and  $\Gamma' \vdash_{\mathcal{C}} \varphi$ .
- Deduction theorem: let  $\Gamma = \{\gamma_0, \ldots, \gamma_i\}$  for some  $i \in \mathbb{N}$ . If  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then  $\vdash_{\mathcal{C}} \gamma_0 \rightarrow (\ldots \rightarrow (\gamma_i \rightarrow \varphi))$ .
- Consistency:  $\Gamma$  is C-consistent if, and only if,  $\Gamma \not\vdash_{\mathcal{C}} \bot$ .

- Soundness: if  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then  $\Gamma \models_L \varphi$ .
- Completeness: if  $\Gamma \models_L \varphi$ , then  $\Gamma \vdash_{\mathcal{C}} \varphi$ .
- Compactness: if  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then there is  $\Gamma'$ , where  $\Gamma'$  is finite and  $\Gamma' \vdash_{\mathcal{C}} \varphi$ .
- Deduction theorem: let  $\Gamma = \{\gamma_0, \ldots, \gamma_i\}$  for some  $i \in \mathbb{N}$ . If  $\Gamma \vdash_{\mathcal{C}} \varphi$ , then  $\vdash_{\mathcal{C}} \gamma_0 \rightarrow (\ldots \rightarrow (\gamma_i \rightarrow \varphi))$ .
- Consistency:  $\Gamma$  is C-consistent if, and only if,  $\Gamma \not\vdash_{\mathcal{C}} \bot$ .
- Termination, convergence, etc.

#### Axiomatisation

Taut enough propositional tautologies. K  $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi).$ 

#### and

- SUB Uniform substitution; and
  - MP If  $\vdash \varphi$  and  $\vdash \varphi \rightarrow \psi$ , then  $\vdash \psi$ .
- **Nec** If  $\vdash \varphi$ , then  $\vdash \Box \varphi$

#### Axiomatisation

Taut enough propositional tautologies. K  $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi).$ 

#### and

- SUB Uniform substitution; and
  - MP If  $\vdash \varphi$  and  $\vdash \varphi \rightarrow \psi$ , then  $\vdash \psi$ .
- Nec If  $\vdash \varphi$ , then  $\vdash \Box \varphi$

You can also add:

Dual  $\Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$ 

to the set of axioms, but it is not needed if you restrict the language to only one modal operator  $\Box$  and take  $\diamondsuit$  as an abbreviation.

1. 
$$p \land q \rightarrow p$$

1.  $p \land q \rightarrow p$ 2.  $\Box((p \land q) \rightarrow p)$ 





1. 
$$p \land q \rightarrow p$$
  
2.  $\Box((p \land q) \rightarrow p)$   
3.  $\Box((p \land q) \rightarrow p) \rightarrow (\Box(p \land q) \rightarrow \Box p)$   
4.  $\Box(p \land q) \rightarrow \Box p$ 

 $\begin{bmatrix} \mathsf{Taut} \\ [\mathsf{Nec}] \\ [\mathsf{K}, \varphi = (p \land q), \psi = p] \\ [\mathsf{MP}, \mathsf{2}, \mathsf{3}] \end{bmatrix}$ 

• It is an analytic method: we "destroy" formulae when applying the inference rules. This means that termination (for some logics) is easy to achieve, as the obtained conclusions for each inference rule are "smaller" than its premisses.

- It is an analytic method: we "destroy" formulae when applying the inference rules. This means that termination (for some logics) is easy to achieve, as the obtained conclusions for each inference rule are "smaller" than its premisses.
- The resulting construction is a tree.

- It is an analytic method: we "destroy" formulae when applying the inference rules. This means that termination (for some logics) is easy to achieve, as the obtained conclusions for each inference rule are "smaller" than its premisses.
- The resulting construction is a tree.
- It corresponds to reasoning by contradiction: we start by negating what we want to prove; if all the branches of a tree leads to contradiction, we have a proof.

- It is an analytic method: we "destroy" formulae when applying the inference rules. This means that termination (for some logics) is easy to achieve, as the obtained conclusions for each inference rule are "smaller" than its premisses.
- The resulting construction is a tree.
- It corresponds to reasoning by contradiction: we start by negating what we want to prove; if all the branches of a tree leads to contradiction, we have a proof.
- We will be using Fitting's construction: there are many others.

- It is an analytic method: we "destroy" formulae when applying the inference rules. This means that termination (for some logics) is easy to achieve, as the obtained conclusions for each inference rule are "smaller" than its premisses.
- The resulting construction is a tree.
- It corresponds to reasoning by contradiction: we start by negating what we want to prove; if all the branches of a tree leads to contradiction, we have a proof.
- We will be using Fitting's construction: there are many others.
- It uses the notion of prefixes to label formulae in the tree: prefixes correspond to *paths* in a model.

- It is an analytic method: we "destroy" formulae when applying the inference rules. This means that termination (for some logics) is easy to achieve, as the obtained conclusions for each inference rule are "smaller" than its premisses.
- The resulting construction is a tree.
- It corresponds to reasoning by contradiction: we start by negating what we want to prove; if all the branches of a tree leads to contradiction, we have a proof.
- We will be using Fitting's construction: there are many others.
- It uses the notion of prefixes to label formulae in the tree: prefixes correspond to *paths* in a model.
- We will consider that formulae are in Negation Normal Form: negation is applied only to propositional symbols, conjunctions and disjunctions are the only classical connectives allowed;

- It is an analytic method: we "destroy" formulae when applying the inference rules. This means that termination (for some logics) is easy to achieve, as the obtained conclusions for each inference rule are "smaller" than its premisses.
- The resulting construction is a tree.
- It corresponds to reasoning by contradiction: we start by negating what we want to prove; if all the branches of a tree leads to contradiction, we have a proof.
- We will be using Fitting's construction: there are many others.
- It uses the notion of prefixes to label formulae in the tree: prefixes correspond to *paths* in a model.
- We will consider that formulae are in Negation Normal Form: negation is applied only to propositional symbols, conjunctions and disjunctions are the only classical connectives allowed; for boxes and diamonds, we move negation inwards using the equivalences:

$$\neg \Box \varphi = \diamondsuit \neg \varphi \text{ and } \neg \diamondsuit \varphi = \Box \neg \varphi$$

C. Nalon

München, 24/10/2023

Suppose we want to prove:

$$\Box (p \land q) \to (\Box p \land \Box q)$$

We start by negating it (because this is a method by contradiction):

$$\neg(\Box(p \land q) \to (\Box p \land \Box q))$$

and proceed to transform it in its NNF:

 $\neg(\Box(p \land q) \rightarrow (\Box p \land \Box q)) = \Box(p \land q) \land \neg(\Box p \land \Box q)$ 

Suppose we want to prove:

$$\Box (p \land q) \to (\Box p \land \Box q)$$

We start by negating it (because this is a method by contradiction):

$$\neg(\Box(p \land q) \to (\Box p \land \Box q))$$

and proceed to transform it in its NNF:

$$\neg(\Box(p \land q) \rightarrow (\Box p \land \Box q)) = \Box(p \land q) \land \neg(\Box p \land \Box q)$$
$$= \Box(p \land q) \land (\neg \Box p \lor \neg \Box q)$$

Suppose we want to prove:

$$\Box (p \land q) \to (\Box p \land \Box q)$$

We start by negating it (because this is a method by contradiction):

$$\neg(\Box(p \land q) \to (\Box p \land \Box q))$$

and proceed to transform it in its NNF:

$$\neg(\Box(p \land q) \rightarrow (\Box p \land \Box q)) = \Box(p \land q) \land \neg(\Box p \land \Box q)$$
$$= \Box(p \land q) \land (\neg\Box p \lor \neg\Box q)$$
$$= \Box(p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$$

C. Nalon

There are four kinds of rules. In the literature they are often refered as  $\alpha, \beta, \gamma$ , and  $\delta$  rules.

There are four kinds of rules. In the literature they are often refered as  $\alpha, \beta, \gamma$ , and  $\delta$  rules.

- $\alpha$  : applied to conjunctive formulae
- $\beta$  : applied to disjunctive formulae
- $\gamma$  : applied to universal formulae
- $\delta$  : applied to existential formulae

There are four kinds of rules. In the literature they are often refered as  $\alpha, \beta, \gamma$ , and  $\delta$  rules.

- $\alpha$  : applied to conjunctive formulae
- $\beta$  : applied to disjunctive formulae
- $\gamma$  : applied to universal formulae
- $\delta$  : applied to existential formulae

| α                          | $\beta$                                                                            | $\gamma$                    | δ                              |
|----------------------------|------------------------------------------------------------------------------------|-----------------------------|--------------------------------|
| $\sigma:\varphi\wedge\psi$ | $\sigma$ : (0) $\chi$ $a/a$                                                        | $\sigma:\Box\varphi$        | $\sigma: \diamondsuit \varphi$ |
| $\sigma:\varphi$           | $\frac{\psi \cdot \varphi \vee \psi}{\sigma \cdot \varphi + \sigma \cdot \varphi}$ | $\sigma.i: \varphi$         | $\sigma.i:\varphi$             |
| $\sigma:\psi$              | $v \cdot \varphi \mid v \cdot \varphi$                                             | for all existing $\sigma.i$ | for a fresh $\sigma.i$         |

There are four kinds of rules. In the literature they are often refered as  $\alpha, \beta, \gamma$ , and  $\delta$  rules.

- $\alpha$  : applied to conjunctive formulae
- $\beta$  : applied to disjunctive formulae
- $\gamma$  : applied to universal formulae
- $\delta$  : applied to existential formulae

| $\alpha$                   | $\beta$                                               | $\gamma$                    | $\delta$                       |
|----------------------------|-------------------------------------------------------|-----------------------------|--------------------------------|
| $\sigma:\varphi\wedge\psi$ | $\sigma$ : (0) ( $a/a$                                | $\sigma:\Box\varphi$        | $\sigma: \diamondsuit \varphi$ |
| $\sigma: \varphi$          | $\frac{\varphi \cdot \varphi \cdot \varphi}{\varphi}$ | $\sigma.i: arphi$           | $\sigma.i:\varphi$             |
| $\sigma:\psi$              | $0. \varphi   0. \varphi$                             | for all existing $\sigma.i$ | for a fresh $\sigma.i$         |

This calculus is not confluent: you need to apply all the  $\alpha$  and  $\beta$  rules before applying the  $\delta$  rules. The  $\gamma$  rules should be applied last.

Suppose we want to prove:  $\Box(p \land q) \rightarrow (\Box p \land \Box q)$ : We start by negating it:  $\neg(\Box(p \land q) \rightarrow (\Box p \land \Box q))$ and putting it into its NNF:  $\Box(p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$ Now we can start the tableaux construction:

(1) 1:  $\Box (p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$  [neg. assumption]
(1) 1:  $\Box (p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$  [neg. assumption]

# **Back to the Example**

Suppose we want to prove:  $\Box(p \land q) \rightarrow (\Box p \land \Box q)$ : We start by negating it:  $\neg(\Box(p \land q) \rightarrow (\Box p \land \Box q))$ and putting it into its NNF:  $\Box(p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$ Now we can start the tableaux construction:

(1) 1: 
$$\Box(p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$$
 [neg. assumption]  
(2) 1:  $\Box(p \land q)$  [ $\alpha$ , 1]  
(3) 1:  $\diamondsuit \neg p \lor \diamondsuit \neg q$  [ $\alpha$ , 1]

(1) 1:  $\Box(p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box(p \land q)$  [ $\alpha$ , 1] (3) 1:  $\diamondsuit \neg p \lor \diamondsuit \neg q$  [ $\alpha$ , 1] (4) 1:  $\diamondsuit \neg p$  [ $\beta$ , 3] (5) 1:  $\diamondsuit \neg q$  [ $\beta$ , 3]

(1) 1: 
$$\Box(p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$$
 [neg. assumption]  
(2) 1:  $\Box(p \land q)$  [ $\alpha, 1$ ]  
(3) 1:  $\diamondsuit \neg p \lor \diamondsuit \neg q$  [ $\alpha, 1$ ]  
(4) 1:  $\diamondsuit \neg p$  [ $\beta, 3$ ] (5) 1:  $\diamondsuit \neg q$  [ $\beta, 3$ ]  
(6) 1.1:  $\neg p$  [ $\delta, 4$ ]

(1) 1:  $\Box(p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box(p \land q)$  [ $\alpha$ , 1] (3) 1:  $\diamondsuit \neg p \lor \diamondsuit \neg q$  [ $\alpha$ , 1] (4) 1:  $\diamondsuit \neg p$  [ $\beta$ , 3] (5) 1:  $\diamondsuit \neg q$  [ $\beta$ , 3] (6) 1.1:  $\neg p$  [ $\delta$ , 4] (7) 1.1:  $p \land q$  [ $\gamma$ , 2]

(1) 1: 
$$\Box(p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$$
 [neg. assumption  
(2) 1:  $\Box(p \land q)$  [ $\alpha, 1$ ]  
(3) 1:  $\diamondsuit \neg p \lor \diamondsuit \neg q$  [ $\alpha, 1$ ]  
(4) 1:  $\diamondsuit \neg p$  [ $\beta, 3$ ] (5) 1:  $\diamondsuit \neg q$  [ $\beta, 3$ ]  
(6) 1.1:  $\neg p$  [ $\delta, 4$ ]  
(7) 1.1:  $p \land q$  [ $\gamma, 2$ ]  
(8) 1.1:  $p$  [ $\alpha, 7$ ]

(1) 1:  $\Box (p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box (p \land q)$  [ $\alpha, 1$ ] (3) 1:  $\Diamond \neg p \lor \Diamond \neg q$  [ $\alpha$ , 1] (4) 1:  $\bigtriangledown \neg p$  [ $\beta$ , 3] (5) 1:  $\diamondsuit \neg q$  [ $\beta$ , 3] (6) 1.1:  $\neg p \quad [\delta, 4]$ (7) 1.1:  $p \land q [\gamma, 2]$ (8) 1.1:  $p \quad [\alpha, 7]$ X

(1) 1:  $\Box (p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box (p \land q)$  [ $\alpha, 1$ ] (3) 1:  $\Diamond \neg p \lor \Diamond \neg q$  [ $\alpha$ , 1] (4) 1:  $\Diamond \neg p$  [ $\beta$ , 3] (5) 1:  $\Diamond \neg q$  [ $\beta$ , 3] (6) 1.1:  $\neg p \quad [\delta, 4]$  (9) 1.2:  $\neg q \quad [\delta, 5]$ (7) 1.1:  $p \wedge q [\gamma, 2]$ (8) 1.1:  $p \quad [\alpha, 7]$ X

Suppose we want to prove:  $\Box(p \land q) \rightarrow (\Box p \land \Box q)$ : We start by negating it:  $\neg(\Box(p \land q) \rightarrow (\Box p \land \Box q))$ and putting it into its NNF:  $\Box(p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$ Now we can start the tableaux construction: (1) 1:  $\Box(p \land q) \land (\bigtriangleup \neg p \lor \bigtriangleup \neg q)$ 

(1) 1: 
$$\Box (p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$$
 [neg. assumption]  
(2) 1:  $\Box (p \land q)$  [ $\alpha$ , 1]  
(3) 1:  $\diamondsuit \neg p \lor \diamondsuit \neg q$  [ $\alpha$ , 1]  
(4) 1:  $\diamondsuit \neg p$  [ $\beta$ , 3] (5) 1:  $\diamondsuit \neg q$  [ $\beta$ , 3]  
(6) 1.1:  $\neg p$  [ $\delta$ , 4] (9) 1.2:  $\neg q$  [ $\delta$ , 5]  
(7) 1.1:  $p \land q$  [ $\gamma$ , 2] (10) 1.2:  $p \land q$  [ $\gamma$ , 2]  
(8) 1.1:  $p$  [ $\alpha$ , 7]  
 $X$ 

Suppose we want to prove:  $[p \land q] \rightarrow ([p \land q])$ : We start by negating it:  $\neg(\Box(p \land q) \rightarrow (\Box p \land \Box q))$ and putting it into its NNF:  $\Box (p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$ Now we can start the tableaux construction: (1) 1:  $\Box (p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box (p \land q)$  [ $\alpha, 1$ ] (3) 1:  $\Diamond \neg p \lor \Diamond \neg q$  [ $\alpha$ , 1] (4) 1:  $\Diamond \neg p$  [ $\beta$ , 3] (5) 1:  $\Diamond \neg q$  [ $\beta$ , 3] (6) 1.1:  $\neg p \quad [\delta, 4]$  (9) 1.2:  $\neg q \quad [\delta, 5]$ (7) 1.1:  $p \land q [\gamma, 2]$  (10) 1.2:  $p \land q [\gamma, 2]$ (8) 1.1:  $p \quad [\alpha, 7]$  (11) 1.2:  $q \quad [\alpha, 10]$ 

X

Suppose we want to prove:  $[p \land q] \rightarrow ([p \land q])$ : We start by negating it:  $\neg(\Box(p \land q) \rightarrow (\Box p \land \Box q))$ and putting it into its NNF:  $\Box (p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$ Now we can start the tableaux construction: (1) 1:  $\Box (p \land q) \land (\diamondsuit \neg p \lor \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box (p \land q)$  [ $\alpha, 1$ ] (3) 1:  $\Diamond \neg p \lor \Diamond \neg q$  [ $\alpha$ , 1] (4) 1:  $\Diamond \neg p$  [ $\beta$ , 3] (5) 1:  $\Diamond \neg q$  [ $\beta$ , 3] (6) 1.1:  $\neg p \quad [\delta, 4]$  (9) 1.2:  $\neg q \quad [\delta, 5]$ (7) 1.1:  $p \land q [\gamma, 2]$  (10) 1.2:  $p \land q [\gamma, 2]$ (8) 1.1:  $p \quad [\alpha, 7]$  (11) 1.2:  $q \quad [\alpha, 10]$ XX

Suppose we want to prove:  $\Box(p \lor q) \rightarrow (\Box p \lor \Box q)$ : We start by negating it:  $\neg(\Box(p \lor q) \rightarrow (\Box p \lor \Box q))$ and putting it into its NNF:  $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$ Now we can start the tableaux construction: (1) 1:  $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$  [neg. assumption]

Suppose we want to prove:  $\Box(p \lor q) \rightarrow (\Box p \lor \Box q)$ : We start by negating it:  $\neg(\Box(p \lor q) \rightarrow (\Box p \lor \Box q))$ and putting it into its NNF:  $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$ Now we can start the tableaux construction: (1) 1:  $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$  [neg. assumption]

Suppose we want to prove:  $\Box(p \lor q) \rightarrow (\Box p \lor \Box q)$ : We start by negating it:  $\neg(\Box(p \lor q) \rightarrow (\Box p \lor \Box q))$ and putting it into its NNF:  $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$ Now we can start the tableaux construction: (1) 1:  $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box(p \lor q)$  [ $\alpha$ , 1] (3) 1:  $\diamondsuit \neg p \land \diamondsuit \neg q$  [ $\alpha$ , 1]

Suppose we want to prove:  $[p \lor q] \rightarrow ([p \lor q])$ We start by negating it:  $\neg(\Box(p \lor q) \to (\Box p \lor \Box q))$ and putting it into its NNF:  $\Box (p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$ Now we can start the tableaux construction: (1) 1:  $\Box (p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box (p \lor q)$   $[\alpha, 1]$ (3) 1:  $\Diamond \neg p \land \Diamond \neg q$   $[\alpha, 1]$ (4) 1:  $\Diamond \neg p \quad [\alpha, 3]$ (5) 1:  $\Diamond \neg q \quad [\alpha, 3]$ 

Suppose we want to prove:  $[p \lor q] \rightarrow ([p \lor q])$ We start by negating it:  $\neg(\Box(p \lor q) \to (\Box p \lor \Box q))$ and putting it into its NNF:  $\Box (p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$ Now we can start the tableaux construction: (1) 1:  $\Box (p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box (p \lor q)$   $[\alpha, 1]$ (3) 1:  $\Diamond \neg p \land \Diamond \neg q$   $[\alpha, 1]$ (4) 1:  $\Diamond \neg p \quad [\alpha, 3]$ (5) 1:  $\Diamond \neg q \quad [\alpha, 3]$ (6) 1.1:  $\neg p \quad [\delta, 4]$ 

Suppose we want to prove:  $[p \lor q] \rightarrow ([p \lor q])$ We start by negating it:  $\neg(\Box(p \lor q) \to (\Box p \lor \Box q))$ and putting it into its NNF:  $\Box (p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$ Now we can start the tableaux construction: (1) 1:  $\Box (p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box (p \lor q)$  [ $\alpha, 1$ ] (3) 1:  $\Diamond \neg p \land \Diamond \neg q$   $[\alpha, 1]$ (4) 1:  $\Diamond \neg p \quad [\alpha, 3]$ (5) 1:  $\Diamond \neg q \quad [\alpha, 3]$ (6) 1.1:  $\neg p \quad [\delta, 4]$ (7) 1.1:  $p \lor q [\gamma, 2]$ 

Suppose we want to prove:  $[p \lor q] \rightarrow ([p \lor q])$ We start by negating it:  $\neg(\Box(p \lor q) \to (\Box p \lor \Box q))$ and putting it into its NNF:  $\Box (p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$ Now we can start the tableaux construction: (1) 1:  $\Box (p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box (p \lor q)$   $[\alpha, 1]$ (3) 1:  $\Diamond \neg p \land \Diamond \neg q$   $[\alpha, 1]$ (4) 1:  $\Diamond \neg p \quad [\alpha, 3]$ (5) 1:  $\Diamond \neg q \quad [\alpha, 3]$ (6) 1.1:  $\neg p \quad [\delta, 4]$ (7) 1.1:  $p \lor q$  [ $\gamma, 2$ ] (8) 1.1:  $p \quad [\beta, 7]$  (9) 1.1:  $q \quad [\beta, 7]$ 

Suppose we want to prove:  $[p \lor q] \rightarrow ([p \lor q])$ We start by negating it:  $\neg(\Box(p \lor q) \to (\Box p \lor \Box q))$ and putting it into its NNF:  $\Box (p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$ Now we can start the tableaux construction: (1) 1:  $\Box (p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$  [neg. assumption] (2) 1:  $\Box (p \lor q)$   $[\alpha, 1]$ (3) 1:  $\Diamond \neg p \land \Diamond \neg q$   $[\alpha, 1]$ (4) 1:  $\Diamond \neg p \quad [\alpha, 3]$ (5) 1:  $\Diamond \neg q \quad [\alpha, 3]$ (6) 1.1:  $\neg p \quad [\delta, 4]$ (7) 1.1:  $p \lor q [\gamma, 2]$ (8) 1.1: p [ $\beta$ , 7] (9) 1.1: q [ $\beta$ , 7] X

(1) 1.  $\neg(\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q))$ 

(1) 1.  $\neg(\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q))$ (2) 1.  $\Box(p \rightarrow q)$   $[\alpha, 1]$ (3) 1.  $\neg(\Box p \rightarrow \Box q)$  [ $\alpha, 1$ ]

(1) 1. 
$$\neg(\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q))$$
  
(2) 1.  $\Box(p \rightarrow q)$   $[\alpha, 1]$   
(3) 1.  $\neg(\Box p \rightarrow \Box q)$   $[\alpha, 1]$   
(4) 1.  $\Box p$   $[\alpha, 3]$   
(5) 1.  $\neg\Box q$   $[\alpha, 3]$ 

C. Nalon

München, 24/10/2023

(1) 1. 
$$\neg(\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q))$$
  
(2) 1.  $\Box(p \rightarrow q)$   $[\alpha, 1]$   
(3) 1.  $\neg(\Box p \rightarrow \Box q)$   $[\alpha, 1]$   
(4) 1.  $\Box p$   $[\alpha, 3]$   
(5) 1.  $\neg\Box q$   $[\alpha, 3]$   
(6) 1.1.  $\neg q$   $[\delta, 5]$ 

(1) 1. 
$$\neg (\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q))$$
  
(2) 1.  $\Box(p \rightarrow q)$   $[\alpha, 1]$   
(3) 1.  $\neg (\Box p \rightarrow \Box q)$   $[\alpha, 1]$   
(4) 1.  $\Box p$   $[\alpha, 3]$   
(5) 1.  $\neg \Box q$   $[\alpha, 3]$   
(6) 1.1.  $\neg q$   $[\delta, 5]$   
(7) 1.1.  $p \rightarrow q$   $[\gamma, 2]$   
(8) 1.1.  $p$   $[\gamma, 4]$ 

München, 24/10/2023



München, 24/10/2023

# Soundness

- We need to show that every step in the construction of the tableaux is satisfiability preserving.
- We have only four rules:



• So, we need to prove that given a model, if it satisfies the premises, then it satisfies the conclusion.

# Soundness

- We need to show that every step in the construction of the tableaux is satisfiability preserving.
- We have only four rules:



- So, we need to prove that given a model, if it satisfies the premises, then it satisfies the conclusion.
- Let  $\mathcal{M} = \langle \mathcal{W}, R, \pi \rangle$  be a model such that  $\mathcal{M}$  satisfies  $\sigma : \varphi \land \psi$ .

**Definition 2.5.1** Let  $\sigma : \varphi$  be a prefixed formula, where  $\varphi \in WFF$ . Also, let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  be a Kripke structure. Finally, let  $\Sigma$  be a set of prefixes and  $f : \Sigma \longrightarrow \mathcal{W}$  be a function that assigns to each prefix a world in  $\mathcal{M}$  in such a way that:

- If  $\sigma$  and  $\sigma.i$  are prefixes, then  $f(\sigma)\mathcal{R}f(\sigma.i)$ ; and
- If  $\sigma : \varphi \in \Sigma$ , then  $\mathcal{M}, f(\sigma) \models \varphi$ .

**Definition 2.5.1** Let  $\sigma : \varphi$  be a prefixed formula, where  $\varphi \in WFF$ . Also, let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  be a Kripke structure. Finally, let  $\Sigma$  be a set of prefixes and  $f : \Sigma \longrightarrow \mathcal{W}$  be a function that assigns to each prefix a world in  $\mathcal{M}$  in such a way that:

- If  $\sigma$  and  $\sigma.i$  are prefixes, then  $f(\sigma)\mathcal{R}f(\sigma.i)$ ; and
- If  $\sigma : \varphi \in \Sigma$ , then  $\mathcal{M}, f(\sigma) \models \varphi$ .

A tableau branch is satisfiable if its set of prefixed formulae is satisfiable. A tableau is satisfiable if it has a satisfiable branch.

It is important to also remember that we are dealing with a refutational calculus. This means that if the formula we are dealing with is valid, then the tableau for its negation is closed. The first lemma says that there cannot be a model for a formula if its tableau is closed:

**Proposition 2.5.2** A closed tableau is not satisfiable.

**Proof** (by contradiction). Let  $\mathcal{T}$  be a closed tableau and assume it is satisfiable.

It is important to also remember that we are dealing with a refutational calculus. This means that if the formula we are dealing with is valid, then the tableau for its negation is closed. The first lemma says that there cannot be a model for a formula if its tableau is closed:

# **Proposition 2.5.2** A closed tableau is not satisfiable.

**Proof** (by contradiction). Let  $\mathcal{T}$  be a closed tableau and assume it is satisfiable. Because  $\mathcal{T}$  is satisfiable, then by definition there is a branch in  $\mathcal{T}$  that is satisfiable.

It is important to also remember that we are dealing with a refutational calculus. This means that if the formula we are dealing with is valid, then the tableau for its negation is closed. The first lemma says that there cannot be a model for a formula if its tableau is closed:

# **Proposition 2.5.2** A closed tableau is not satisfiable.

**Proof** (by contradiction). Let  $\mathcal{T}$  be a closed tableau and assume it is satisfiable. Because  $\mathcal{T}$  is satisfiable, then by definition there is a branch in  $\mathcal{T}$  that is satisfiable. Let  $\mathcal{B}$  be such a branch of  $\mathcal{T}$ .

It is important to also remember that we are dealing with a refutational calculus. This means that if the formula we are dealing with is valid, then the tableau for its negation is closed. The first lemma says that there cannot be a model for a formula if its tableau is closed:

# **Proposition 2.5.2** A closed tableau is not satisfiable.

**Proof** (by contradiction). Let  $\mathcal{T}$  be a closed tableau and assume it is satisfiable. Because  $\mathcal{T}$  is satisfiable, then by definition there is a branch in  $\mathcal{T}$  that is satisfiable. Let  $\mathcal{B}$  be such a branch of  $\mathcal{T}$ . Now, because  $\mathcal{T}$  is closed, by definition all branches have contradictions (a formula and its negation) at some prefix.

It is important to also remember that we are dealing with a refutational calculus. This means that if the formula we are dealing with is valid, then the tableau for its negation is closed. The first lemma says that there cannot be a model for a formula if its tableau is closed:

# **Proposition 2.5.2** A closed tableau is not satisfiable.

**Proof** (by contradiction). Let  $\mathcal{T}$  be a closed tableau and assume it is satisfiable. Because  $\mathcal{T}$  is satisfiable, then by definition there is a branch in  $\mathcal{T}$  that is satisfiable. Let  $\mathcal{B}$  be such a branch of  $\mathcal{T}$ . Now, because  $\mathcal{T}$  is closed, by definition all branches have contradictions (a formula and its negation) at some prefix. Let  $\sigma : \varphi$  and  $\sigma : \neg \varphi$  be such prefixed formulae in  $\mathcal{B}$ .

It is important to also remember that we are dealing with a refutational calculus. This means that if the formula we are dealing with is valid, then the tableau for its negation is closed. The first lemma says that there cannot be a model for a formula if its tableau is closed:

# Proposition 2.5.2 A closed tableau is not satisfiable.

**Proof** (by contradiction). Let  $\mathcal{T}$  be a closed tableau and assume it is satisfiable. Because  $\mathcal{T}$  is satisfiable, then by definition there is a branch in  $\mathcal{T}$  that is satisfiable. Let  $\mathcal{B}$  be such a branch of  $\mathcal{T}$ . Now, because  $\mathcal{T}$  is closed, by definition all branches have contradictions (a formula and its negation) at some prefix. Let  $\sigma : \varphi$  and  $\sigma : \neg \varphi$  be such prefixed formulae in  $\mathcal{B}$ . From the definition of satisfiability for prefixed formulae, we have that there is a structure  $\mathcal{M}$  such that  $\mathcal{M}, f(\sigma) \models \varphi$  and  $\mathcal{M}, f(\sigma) \models \neg \varphi$ .

It is important to also remember that we are dealing with a refutational calculus. This means that if the formula we are dealing with is valid, then the tableau for its negation is closed. The first lemma says that there cannot be a model for a formula if its tableau is closed:

# Proposition 2.5.2 A closed tableau is not satisfiable.

**Proof** (by contradiction). Let  $\mathcal{T}$  be a closed tableau and assume it is satisfiable. Because  $\mathcal{T}$  is satisfiable, then by definition there is a branch in  $\mathcal{T}$  that is satisfiable. Let  $\mathcal{B}$  be such a branch of  $\mathcal{T}$ . Now, because  $\mathcal{T}$  is closed, by definition all branches have contradictions (a formula and its negation) at some prefix. Let  $\sigma : \varphi$  and  $\sigma : \neg \varphi$  be such prefixed formulae in  $\mathcal{B}$ . From the definition of satisfiability for prefixed formulae, we have that there is a structure  $\mathcal{M}$  such that  $\mathcal{M}, f(\sigma) \models \varphi$  and  $\mathcal{M}, f(\sigma) \models \neg \varphi$ . By classical reasoning,  $\mathcal{M}, f(\sigma) \models$  false, which is impossible.
Remember: if  $\vdash_{\mathcal{C}} \varphi$ , then  $\mathcal{F} \models \varphi$ 

It is important to also remember that we are dealing with a refutational calculus. This means that if the formula we are dealing with is valid, then the tableau for its negation is closed. The first lemma says that there cannot be a model for a formula if its tableau is closed:

#### Proposition 2.5.2 A closed tableau is not satisfiable.

**Proof** (by contradiction). Let  $\mathcal{T}$  be a closed tableau and assume it is satisfiable. Because  $\mathcal{T}$  is satisfiable, then by definition there is a branch in  $\mathcal{T}$  that is satisfiable. Let  $\mathcal{B}$  be such a branch of  $\mathcal{T}$ . Now, because  $\mathcal{T}$  is closed, by definition all branches have contradictions (a formula and its negation) at some prefix. Let  $\sigma : \varphi$  and  $\sigma : \neg \varphi$  be such prefixed formulae in  $\mathcal{B}$ . From the definition of satisfiability for prefixed formulae, we have that there is a structure  $\mathcal{M}$  such that  $\mathcal{M}, f(\sigma) \models \varphi$  and  $\mathcal{M}, f(\sigma) \models \neg \varphi$ . By classical reasoning,  $\mathcal{M}, f(\sigma) \models$  false, which is impossible. Therefore,  $\mathcal{T}$  cannot be satisfiable.

**Proposition 2.5.3** Let  $\mathcal{T}$  be a tableau and  $\mathcal{T}'$  be the tableau obtained from  $\mathcal{T}$  by an application of any of the inference rules. If  $\mathcal{T}$  is satisfiable, then  $\mathcal{T}'$  is also satisfiable.

**Proof:** Let  $\mathcal{T}$  be a satisfiable tableau and  $\mathcal{B}$  one of its satisfiable branches (by definition there is one). The proof is by cases:

**Proposition 2.5.3** Let  $\mathcal{T}$  be a tableau and  $\mathcal{T}'$  be the tableau obtained from  $\mathcal{T}$  by an application of any of the inference rules. If  $\mathcal{T}$  is satisfiable, then  $\mathcal{T}'$  is also satisfiable.

**Proof:** Let  $\mathcal{T}$  be a satisfiable tableau and  $\mathcal{B}$  one of its satisfiable branches (by definition there is one). The proof is by cases:

Assume *T'* was obtained from *T* by an application of the δ rule to a formula in *B*.

**Proposition 2.5.3** Let  $\mathcal{T}$  be a tableau and  $\mathcal{T}'$  be the tableau obtained from  $\mathcal{T}$  by an application of any of the inference rules. If  $\mathcal{T}$  is satisfiable, then  $\mathcal{T}'$  is also satisfiable.

**Proof:** Let  $\mathcal{T}$  be a satisfiable tableau and  $\mathcal{B}$  one of its satisfiable branches (by definition there is one). The proof is by cases:

Assume *T'* was obtained from *T* by an application of the δ rule to a formula in *B*. That is, the rule was applied to σ : ◊φ in *B* of *T*.

**Proposition 2.5.3** Let  $\mathcal{T}$  be a tableau and  $\mathcal{T}'$  be the tableau obtained from  $\mathcal{T}$  by an application of any of the inference rules. If  $\mathcal{T}$  is satisfiable, then  $\mathcal{T}'$  is also satisfiable.

**Proof:** Let  $\mathcal{T}$  be a satisfiable tableau and  $\mathcal{B}$  one of its satisfiable branches (by definition there is one). The proof is by cases:

• Assume  $\mathcal{T}'$  was obtained from  $\mathcal{T}$  by an application of the  $\delta$  rule to a formula in  $\mathcal{B}$ . That is, the rule was applied to  $\sigma : \diamondsuit \varphi$  in  $\mathcal{B}$  of  $\mathcal{T}$ . By the definition of satisfiability, there is a model  $\mathcal{M}$  such that  $\mathcal{M}, f(\sigma) \models \diamondsuit \varphi$ .

**Proposition 2.5.3** Let  $\mathcal{T}$  be a tableau and  $\mathcal{T}'$  be the tableau obtained from  $\mathcal{T}$  by an application of any of the inference rules. If  $\mathcal{T}$  is satisfiable, then  $\mathcal{T}'$  is also satisfiable.

**Proof:** Let  $\mathcal{T}$  be a satisfiable tableau and  $\mathcal{B}$  one of its satisfiable branches (by definition there is one). The proof is by cases:

• Assume  $\mathcal{T}'$  was obtained from  $\mathcal{T}$  by an application of the  $\delta$  rule to a formula in  $\mathcal{B}$ . That is, the rule was applied to  $\sigma : \diamondsuit \varphi$  in  $\mathcal{B}$  of  $\mathcal{T}$ . By the definition of satisfiability, there is a model  $\mathcal{M}$  such that  $\mathcal{M}, f(\sigma) \models \diamondsuit \varphi$ . This implies that there is a world w' in  $\mathcal{M}$  such that  $f(\sigma)\mathcal{R}w'$  and that  $\mathcal{M}, w' \models \varphi$ .

**Proposition 2.5.3** Let  $\mathcal{T}$  be a tableau and  $\mathcal{T}'$  be the tableau obtained from  $\mathcal{T}$  by an application of any of the inference rules. If  $\mathcal{T}$  is satisfiable, then  $\mathcal{T}'$  is also satisfiable.

**Proof:** Let  $\mathcal{T}$  be a satisfiable tableau and  $\mathcal{B}$  one of its satisfiable branches (by definition there is one). The proof is by cases:

• Assume  $\mathcal{T}'$  was obtained from  $\mathcal{T}$  by an application of the  $\delta$  rule to a formula in  $\mathcal{B}$ . That is, the rule was applied to  $\sigma : \diamondsuit \varphi$  in  $\mathcal{B}$  of  $\mathcal{T}$ . By the definition of satisfiability, there is a model  $\mathcal{M}$  such that  $\mathcal{M}, f(\sigma) \models \diamondsuit \varphi$ . This implies that there is a world w' in  $\mathcal{M}$  such that  $f(\sigma)\mathcal{R}w'$  and that  $\mathcal{M}, w' \models \varphi$ . Note that before we apply the  $\delta$  rule, the prefix  $\sigma.i$  is not in  $\mathcal{B}$ .

**Proposition 2.5.3** Let  $\mathcal{T}$  be a tableau and  $\mathcal{T}'$  be the tableau obtained from  $\mathcal{T}$  by an application of any of the inference rules. If  $\mathcal{T}$  is satisfiable, then  $\mathcal{T}'$  is also satisfiable.

**Proof:** Let  $\mathcal{T}$  be a satisfiable tableau and  $\mathcal{B}$  one of its satisfiable branches (by definition there is one). The proof is by cases:

• Assume  $\mathcal{T}'$  was obtained from  $\mathcal{T}$  by an application of the  $\delta$  rule to a formula in  $\mathcal{B}$ . That is, the rule was applied to  $\sigma : \diamondsuit \varphi$  in  $\mathcal{B}$  of  $\mathcal{T}$ . By the definition of satisfiability, there is a model  $\mathcal{M}$  such that  $\mathcal{M}, f(\sigma) \models \diamondsuit \varphi$ . This implies that there is a world w' in  $\mathcal{M}$  such that  $f(\sigma)\mathcal{R}w'$  and that  $\mathcal{M}, w' \models \varphi$ . Note that before we apply the  $\delta$  rule, the prefix  $\sigma.i$  is not in  $\mathcal{B}$ . Now, we extend fto f' as follows: f' is exactly the same as f for all prefixes in  $\mathcal{B}$ .

**Proposition 2.5.3** Let  $\mathcal{T}$  be a tableau and  $\mathcal{T}'$  be the tableau obtained from  $\mathcal{T}$  by an application of any of the inference rules. If  $\mathcal{T}$  is satisfiable, then  $\mathcal{T}'$  is also satisfiable.

**Proof:** Let  $\mathcal{T}$  be a satisfiable tableau and  $\mathcal{B}$  one of its satisfiable branches (by definition there is one). The proof is by cases:

• Assume  $\mathcal{T}'$  was obtained from  $\mathcal{T}$  by an application of the  $\delta$  rule to a formula in  $\mathcal{B}$ . That is, the rule was applied to  $\sigma : \diamondsuit \varphi$  in  $\mathcal{B}$  of  $\mathcal{T}$ . By the definition of satisfiability, there is a model  $\mathcal{M}$  such that  $\mathcal{M}, f(\sigma) \models \diamondsuit \varphi$ . This implies that there is a world w' in  $\mathcal{M}$  such that  $f(\sigma)\mathcal{R}w'$  and that  $\mathcal{M}, w' \models \varphi$ . Note that before we apply the  $\delta$  rule, the prefix  $\sigma.i$  is not in  $\mathcal{B}$ . Now, we extend fto f' as follows: f' is exactly the same as f for all prefixes in  $\mathcal{B}$ . We then add that  $f'(\sigma.i)$  is w'.

**Proposition 2.5.3** Let  $\mathcal{T}$  be a tableau and  $\mathcal{T}'$  be the tableau obtained from  $\mathcal{T}$  by an application of any of the inference rules. If  $\mathcal{T}$  is satisfiable, then  $\mathcal{T}'$  is also satisfiable.

**Proof:** Let  $\mathcal{T}$  be a satisfiable tableau and  $\mathcal{B}$  one of its satisfiable branches (by definition there is one). The proof is by cases:

• Assume  $\mathcal{T}'$  was obtained from  $\mathcal{T}$  by an application of the  $\delta$  rule to a formula in  $\mathcal{B}$ . That is, the rule was applied to  $\sigma : \diamondsuit \varphi$  in  $\mathcal{B}$  of  $\mathcal{T}$ . By the definition of satisfiability, there is a model  $\mathcal{M}$  such that  $\mathcal{M}, f(\sigma) \models \diamondsuit \varphi$ . This implies that there is a world w' in  $\mathcal{M}$  such that  $f(\sigma)\mathcal{R}w'$  and that  $\mathcal{M}, w' \models \varphi$ . Note that before we apply the  $\delta$  rule, the prefix  $\sigma.i$  is not in  $\mathcal{B}$ . Now, we extend fto f' as follows: f' is exactly the same as f for all prefixes in  $\mathcal{B}$ . We then add that  $f'(\sigma.i)$  is w'. From the above, we have both that  $f'(\sigma)\mathcal{R}f'(\sigma.i)$  and  $\mathcal{M}, f'(\sigma.i) \models \varphi$ .

**Proposition 2.5.3** Let  $\mathcal{T}$  be a tableau and  $\mathcal{T}'$  be the tableau obtained from  $\mathcal{T}$  by an application of any of the inference rules. If  $\mathcal{T}$  is satisfiable, then  $\mathcal{T}'$  is also satisfiable.

**Proof:** Let  $\mathcal{T}$  be a satisfiable tableau and  $\mathcal{B}$  one of its satisfiable branches (by definition there is one). The proof is by cases:

Assume *T'* was obtained from *T* by an application of the δ rule to a formula in *B*. That is, the rule was applied to *σ* : ◊ φ in *B* of *T*. By the definition of satisfiability, there is a model *M* such that *M*, *f*(*σ*) ⊨ ◊ φ. This implies that there is a world *w'* in *M* such that *f*(*σ*)*Rw'* and that *M*, *w'* ⊨ φ. Note that before we apply the δ rule, the prefix *σ.i* is not in *B*. Now, we extend *f* to *f'* as follows: *f'* is exactly the same as *f* for all prefixes in *B*. We then add that *f'*(*σ.i*) is *w'*. From the above, we have both that *f'*(*σ*)*Rf'*(*σ.i*) and *M*, *f'*(*σ.i*) ⊨ φ. That is, *M* satisfies the conclusions of the δ rule (using *f'* C. Nalon instead of *f*).

#### **Soundness - Theorem**

**Theorem 2.5.4** Let  $\varphi \in WFF$  and  $\mathcal{T}$  a closed tableau for  $\varphi$ . Then,  $\varphi$  is valid.

**Theorem 2.5.4** Let  $\varphi \in WFF$  and  $\mathcal{T}$  a closed tableau for  $\varphi$ . Then,  $\varphi$  is valid.

Just remember now that the closed tableau for  $\varphi$  starts with  $1: \neg \varphi$ .

**Theorem 2.5.4** Let  $\varphi \in WFF$  and  $\mathcal{T}$  a closed tableau for  $\varphi$ . Then,  $\varphi$  is valid.

Just remember now that the closed tableau for  $\varphi$  starts with  $1: \neg \varphi$ .

**Proof:** (By contradiction). Assume that  $\varphi$  is not valid. Then, by definition, there is a model  $\mathcal{M}$  and a world w in  $\mathcal{M}$  such that w does not satisfy  $\varphi$ . By the semantics of negation,  $\mathcal{M}, w \models \neg \varphi$ , for w in  $\mathcal{M}$ . This means that the set  $\{1 : \neg \varphi\}$  is satisfiable. Take  $\mathcal{M}$  as a model and let f(1) = w. By Proposition 2.5.3, all tableaux we might get for  $\{1 : \neg \varphi\}$  are satisfiable. But, from Proposition 2.5.2, because  $\mathcal{T}$  is closed, we know that this cannot happen. It follows that  $\varphi$  is valid.

**Definition 2.5.5** A tableau is saturated if no further rules can be applied.

**Proposition (Page 61)** All tableaux constructions are terminating. **Sketch:** If the construction is *systematic*, this is easy to prove. We have

already defined a systematic construction: use  $\alpha$  and  $\beta$  rules first; then apply  $\delta$ ; and finally apply  $\gamma$ . Note that all steps consist of adding subformulae to the tableau and the number of subformulae of a formula is finite.

**Theorem 2.5.7** Let  $\varphi \in WFF$ . If  $\varphi$  is valid, then there is a closed tableau for  $\varphi$ .

**Proof:** We take the contrapositive: If  $\varphi$  has an open tableau, then  $\varphi$  is not valid.

**Theorem 2.5.7** Let  $\varphi \in WFF$ . If  $\varphi$  is valid, then there is a closed tableau for  $\varphi$ .

**Proof:** We take the contrapositive: If  $\varphi$  has an open tableau, then  $\varphi$  is not valid. Assume that  $\varphi$  has an open (saturated) tableau  $\mathcal{T}$ . We show how to construct a model from this tableau. Take a branch  $\mathcal{B}$  which is open in  $\mathcal{T}$ . Let  $\mathcal{M}$  be as follows:

- $\mathcal{W} = \{ \sigma \mid \sigma : \varphi \in \mathcal{B} \}.$
- if  $\sigma$  and  $\sigma.i$  occur in  $\mathcal{B}$ , then set  $\sigma \mathcal{R} \sigma.i$
- If  $\sigma : p$ , for  $p \in \mathcal{P}$ , occur in  $\mathcal{B}$ , then set  $\pi(\sigma, p) = \text{true}$ ; otherwise  $\pi(\sigma, p) = \text{false.}$

This construction is correct, that is, the built model is indeed a model for  $\mathcal{B}$ .

## Negate: $\neg(\Box(p \lor q) \rightarrow (\Box p \lor \Box q))$ . NNF: $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$

(1) 1: 
$$\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$$
 [neg. assumption]  
(2) 1:  $\Box(p \lor q)$  [ $\alpha$ , 1]  
(3) 1:  $\diamondsuit \neg p \land \diamondsuit \neg q$  [ $\alpha$ , 1]  
(4) 1:  $\diamondsuit \neg p$  [ $\alpha$ , 3]  
(5) 1:  $\diamondsuit \neg q$  [ $\alpha$ , 3]  
(6) 1.1:  $\neg p$  [ $\delta$ , 4]  
(7) 1.1:  $p \lor q$  [ $\gamma$ , 2]  
(8) 1.1:  $p$  [ $\beta$ , 7] (9) 1.1:  $q$  [ $\beta$ , 7]  
 $X$ 

## Negate: $\neg(\Box(p \lor q) \rightarrow (\Box p \lor \Box q))$ . NNF: $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$

(1) 1: 
$$\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$$
 [neg. assumption]  
(2) 1:  $\Box(p \lor q)$  [ $\alpha$ , 1]  
(3) 1:  $\diamondsuit \neg p \land \diamondsuit \neg q$  [ $\alpha$ , 1]  
(4) 1:  $\diamondsuit \neg p$  [ $\alpha$ , 3]  
(5) 1:  $\diamondsuit \neg q$  [ $\alpha$ , 3]  
(6) 1.1:  $\neg p$  [ $\delta$ , 4]  
(7) 1.1:  $p \lor q$  [ $\gamma$ , 2]  
(8) 1.1:  $p$  [ $\beta$ , 7] (9) 1.1:  $q$  [ $\beta$ , 7]  
 $X$  (10) 1.2:  $\neg q$  [ $\delta$ , 5]  
(11) 1.2:  $p \lor q$  [ $\gamma$ , 2]  
(12) 1.2:  $p$  [ $\beta$ , 11] (13) 1.2:  $q$  [ $\beta$ , 11]  
 $X$ 

## Negate: $\neg(\Box(p \lor q) \rightarrow (\Box p \lor \Box q))$ . NNF: $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$

(1) 1: 
$$\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$$
 [neg. assumption]  
(2) 1:  $\Box(p \lor q)$  [ $\alpha, 1$ ]  
(3) 1:  $\diamondsuit \neg p \land \diamondsuit \neg q$  [ $\alpha, 1$ ]  
(4) 1:  $\diamondsuit \neg p \ [\alpha, 3]$   
(5) 1:  $\diamondsuit \neg q \ [\alpha, 3]$   
(6) 1.1:  $\neg p \ [\delta, 4]$   
(7) 1.1:  $p \lor q \ [\gamma, 2]$   
(8) 1.1:  $p \ [\beta, 7]$  (9) 1.1:  $q \ [\beta, 7]$   
X (10) 1.2:  $\neg q \ [\delta, 5]$   
(11) 1.2:  $p \lor q \ [\gamma, 2]$   
(12) 1.2:  $p \ [\beta, 11]$  (13) 1.2:  $q \ [\beta, 11]$   
X

Negate:  $\neg(\Box(p \lor q) \rightarrow (\Box p \lor \Box q))$ . NNF:  $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$ 

(1) 1: 
$$\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$$
 [neg. assumption]  
(2) 1:  $\Box(p \lor q)$  [ $\alpha, 1$ ]  
(3) 1:  $\diamondsuit \neg p \land \diamondsuit \neg q$  [ $\alpha, 1$ ]  
(4) 1:  $\diamondsuit \neg p \ [\alpha, 3]$   
(5) 1:  $\diamondsuit \neg q \ [\alpha, 3]$   
(6) 1.1:  $\neg p \ [\delta, 4]$   
(7) 1.1:  $p \lor q \ [\gamma, 2]$   
(8) 1.1:  $p \ [\beta, 7]$  (9) 1.1:  $q \ [\beta, 7]$   
 $X$  (10) 1.2:  $\neg q \ [\delta, 5]$   
(11) 1.2:  $p \lor q \ [\gamma, 2]$   
(12) 1.2:  $p \ [\beta, 11]$  (13) 1.2:  $q \ [\beta, 11]$   
 $X$ 

Negate:  $\neg(\Box(p \lor q) \rightarrow (\Box p \lor \Box q))$ . NNF:  $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$ 

(1) 1: 
$$\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$$
 [neg. assumption]  
(2) 1:  $\Box(p \lor q)$   $[\alpha, 1]$   
(3) 1:  $\diamondsuit \neg p \land \diamondsuit \neg q$   $[\alpha, 1]$   
(4) 1:  $\diamondsuit \neg p \ [\alpha, 3]$   
(5) 1:  $\diamondsuit \neg q \ [\alpha, 3]$   
(6) 1.1:  $\neg p \ [\delta, 4]$   
(7) 1.1:  $p \lor q \ [\gamma, 2]$   
(8) 1.1:  $p \ [\beta, 7]$  (9) 1.1:  $q \ [\beta, 7]$   
 $X$  (10) 1.2:  $\neg q \ [\delta, 5]$   
(11) 1.2:  $p \lor q \ [\gamma, 2]$   
(12) 1.2:  $p \ [\beta, 11]$  (13) 1.2:  $q \ [\beta, 11]$   
 $X$   
 $X$   
 $Y = \{1, 1.1, 1.2\}$   
 $\mathcal{W} = \{1, 1.1, 1.2\}$   
 $\mathcal{H} = \{(1, 1.1), (1, 1.2)\}$   
 $\pi(1, p) = \pi(1, q) = \text{false}$   
 $\pi(1.1, q) = \text{true}$   
 $\pi(1.2, p) = \text{true}$ 

Negate:  $\neg(\Box(p \lor q) \rightarrow (\Box p \lor \Box q))$ . NNF:  $\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$ 

(1) 1: 
$$\Box(p \lor q) \land (\diamondsuit \neg p \land \diamondsuit \neg q)$$
 [neg. assumption]  
(2) 1:  $\Box(p \lor q) = [\alpha, 1]$   
(3) 1:  $\diamondsuit \neg p \land \diamondsuit \neg q = [\alpha, 1]$   
(4) 1:  $\diamondsuit \neg p = [\alpha, 3]$   
(5) 1:  $\diamondsuit \neg q = [\alpha, 3]$   
(6) 1.1:  $\neg p = [\delta, 4]$   
(7) 1.1:  $p \lor q = [\gamma, 2]$   
(8) 1.1:  $p = [\beta, 7]$   
(9) 1.1:  $q = [\beta, 7]$   
(10) 1.2:  $\neg q = [\delta, 5]$   
(8) 1.1:  $p = [\beta, 7]$   
(9) 1.1:  $q = [\beta, 7]$   
(10) 1.2:  $\neg q = [\delta, 5]$   
(11) 1.2:  $p \lor q = [\gamma, 2]$   
(11) 1.2:  $p \lor q = [\gamma, 2]$   
(12) 1.2:  $p = [\beta, 11]$   
(13) 1.2:  $q = [\beta, 11]$   
(14) 1.2:  $q = [\beta, 11]$   
(15) 1.2:  $q = [\beta, 11]$   
(16) 1.2:  $q = [\beta, 11]$   
(17) 1.2:  $p \lor q = [\beta, 11]$   
(18) 1.2:  $q = [\beta, 11]$   
(19) 1.2:  $q = [\beta, 11]$   
(19) 1.2:  $q = [\beta, 11]$   
(11) 1.2:  $q = [\beta, 11]$   
(11) 1.2:  $q = [\beta, 11]$   
(12) 1.2:  $p = [\beta, 11]$   
(13) 1.2:  $q = [\beta, 11]$ 

C. Nalon

München, 24/10/2023

#### This is just one part of the story...

... better: this is just part one of the story...

### This is just one part of the story...

... better: this is just part one of the story... that is, the part of the story where n = 1.

### This is just one part of the story...

... better: this is just part one of the story... that is, the part of the story where n = 1.

What do you need to extend the calculi for multimodal logics?

... better: this is just part one of the story... that is, the part of the story where n = 1.

What do you need to extend the calculi for multimodal logics?

We start with the easy part: the axiomatic system.

... better: this is just part one of the story... that is, the part of the story where n = 1.

What do you need to extend the calculi for multimodal logics?

We start with the easy part: the axiomatic system.

Taut enough propositional tautologies.

$$\mathsf{K} \quad {}^{a}(\varphi \to \psi) \to ({}^{a}\varphi \to {}^{a}\psi).$$

#### and

SUB Uniform substitution; and

MP If 
$$\vdash \varphi$$
 and  $\vdash \varphi \rightarrow \psi$ , then  $\vdash \psi$ .

**Nec** If  $\vdash \varphi$ , then  $\vdash \blacksquare \varphi$ 

... better: this is just part one of the story... that is, the part of the story where n = 1.

What do you need to extend the calculi for multimodal logics?

We start with the easy part: the axiomatic system.

Taut enough propositional tautologies.

$$\mathsf{K} \quad {}^{a}(\varphi \to \psi) \to ({}^{a}\varphi \to {}^{a}\psi).$$

#### and

SUB Uniform substitution; and

MP If 
$$\vdash \varphi$$
 and  $\vdash \varphi \rightarrow \psi$ , then  $\vdash \psi$ .

**Nec** If  $\vdash \varphi$ , then  $\vdash \blacksquare \varphi$ 

#### **Tableaux for multimodal logics**

| α                          | $\beta$                                               | $\gamma$                    | δ                                |
|----------------------------|-------------------------------------------------------|-----------------------------|----------------------------------|
| $\sigma:\varphi\wedge\psi$ | $\sigma$ : ( $\circ$ ) ( $a/a$ )                      | $\sigma:\Box\varphi$        | $ \sigma: \diamondsuit \varphi $ |
| $\sigma:\varphi$           | $\frac{\varphi \cdot \varphi \cdot \varphi}{\varphi}$ | $\sigma.i:arphi$            | $\sigma.i:arphi$                 |
| $\sigma:\psi$              | $0. \varphi   0. \varphi$                             | for all existing $\sigma.i$ | for a fresh $\sigma.i$           |

#### **Tableaux for multimodal logics**

| α                          | $\beta$                                                           | $\gamma$                        | δ                                                           |
|----------------------------|-------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------|
| $\sigma:\varphi\wedge\psi$ | $\sigma \cdot \phi \times \eta$                                   | $\sigma: {}^a \varphi$          | $\underline{\qquad  \sigma: \diamondsuit \varphi \qquad  }$ |
| $\sigma: \varphi$          | $\frac{\sigma \cdot \varphi \cdot \varphi}{\sigma \cdot \varphi}$ | $\sigma.[a]i:arphi$             | $\sigma.[a]i:arphi$                                         |
| $\sigma:\psi$              | $0. \varphi   0. \varphi$                                         | for all existing $\sigma$ .[a]i | for a fresh $\sigma$ . $[a]i$                               |

Example

 $\diamondsuit(\diamondsuit p \lor \diamondsuit q) \land (\boxed{12}p \lor \cancel{12}q)$ 

# To be continued.

### **Some Other Usual Modal Logics**

Different restrictions on the accessibility relations  $\mathcal{R}_a$  define different modal logics:

- No restrictions:
   K<sub>n</sub>;
- Reflexive: KT<sub>n</sub>;
- Transitive:  $K4_n$ ;
- Euclidean:  $K5_n$ ;
- Serial:  $KD_n$ ;
- Symmetric: KB<sub>n</sub>;
- Reflexive and Transitive: S4<sub>n</sub>;
- Reflexive and Euclidean: S5<sub>n</sub>;



C. Nalon . . .

[Fitting and Mendelsohn, 1998] Fitting, M. and Mendelsohn, R. L. (1998). First-Order Modal Logic. *Synthese Library*, 277, Kluwer Academic Publishers.

[Halpern and Moses, 1992] Halpern, J. Y. and Moses, Y. (1992). A guide to completeness and complexity for modal logics of knowledge and belief. *Artificial Intelligence*, 54(3):319–379.

[Ladner, 1977] Ladner, R. E. (1977). The computational complexity of provability in systems of modal propositional logic. *SIAM J. Comput.*, 6(3):467–480.

[Mints, 1990] Mints, G. (1990). Gentzen-type systems and resolution rules, part I: Propositional logic. *Lecture Notes in Computer Science*, 417:198–231.

[Spaan, 1993] Spaan, E. (1993). *Complexity of Modal Logics*. PhD thesis, University of Amsterdam. C. Nalon München, 24/10/2023