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The Basics



The last session

e Modal logics: syntax and semantics

e Invariance results: for K,,, the class of models is restricted to finite
trees.

e Decidability: PSPACE-complete

C. Nalon Minchen, 24/10/2023



Calculi for Modal Logics



Notation and Properties

e A calculus for a logic L is a pair (A, R);, where A € WFF; and
R < 2WFFL « WFF,).
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Properties of Calculi

e Soundness: ifI' ¢ p, then T =1 .

e Completeness: if I' =, ¢, then T ¢ .

e Compactness: ifI' ¢ ¢, then there is I, where 1" is finite and
[V ¢ .

e Deduction theorem: letI" = {vy,...,v;} forsome i e N. If I" ¢ ¢,
thentcv% — (.. = (i — @)).

e Consistency: I is C-consistent if, and only if, I (/. L.

e T[ermination, convergence, etc.

C. Nalon Minchen, 24/10/2023
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Taut enough propositional tautologies.
K- Lile = 9) = (Le — LIY).
and

SUB Uniform substitution; and
MP If -y and ¢ — v, then - v.
Nec If ¢, then [ |y

You can also add:

Dual ¢ o —[ -y

to the set of axioms, but it is not needed if you restrict the language to
only one modal operator [ ] and take <> as an abbreviation.
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Example: [ J(p A q) — [p

1.

3.

C. Nalon

PAG—D
((pAq)—Dp)
(pAq)—p)—(

(pAq) —

[Taut]
[Nec
[Kip = (pAq)p=p

Muinchen, 24/10/2023



Example: [ J(p A q) — [p

1. pAg—p [Taut
2. L((p A q)—p) [Nec]
3. LlpAqg)—p)— (Lpnaqg) — Llp) Ko = (p A q),¥ = p)
4. OpAq)—Llp [MP,2,3]
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e The resulting construction is a tree.

e |t corresponds to reasoning by contradiction: we start by negating
what we want to prove; if all the branches of a tree leads to
contradiction, we have a proof.

e We will be using Fitting’s construction: there are many others.

e It uses the notion of prefixes to label formulae in the tree: prefixes
correspond to paths in a model.

e We will consider that formulae are in Negation Normal Form:
negation is applied only to propositional symbols, conjunctions and
disjunctions are the only classical connectives allowed; for boxes
and diamonds, we move negation inwards using the equivalences:
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Suppose we want to prove:

(p~gq) = (Lp A Llg)
We start by negating it (because this is a method by contradiction):

—(L A q) = (Lp A Llg))
and proceed to transform it in its NNF:

(U Arg—0CpAlg) = Lpag A —(Lp ALl
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The Rules

There are four kinds of rules. In the literature they are often refered as
a, 3,7, and 9 rules.

. applied to conjunctive formulae
. applied to disjunctive formulae
. applied to universal formulae

. applied to existential formulae

o2 @ QL

) 3 y 0
o . /\ o . o .
Jgngpw <7.390|V.¢¢ J.i:gf (7.2'<:>g;0
o R for all existing 0.« | for a fresh o.:

This calculus is not confluent: you need to apply all the « and 5 rules
before applying the ¢ rules. The ~ rules should be applied last.
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Now we can start the tableaux construction:

N 1: v A (O—pna—qg) [neg. assumption]

(2) 1: L vq) [, 1]

3) 1: O—paA—qg |a,1]
(4) 1: O—p [a;3]
(5) 1: O—g [ 3]
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(1) 1. - — q) — (Up — Llg))

@2 1.0p—q¢  [a1]
(3) 1. _'< p — Q) [@7 1]
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(6) 1.1. —¢ 16, 5]
(7)1.1.p— ¢ [, 2]
(8)1.1. p 1y, 4]
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e We need to show that every step in the construction of the tableaux
Is satisfiability preserving.
e We have only four rules:

Q 3 y 0
o . /\ o . o .
agngpw O(j.:ﬁ;.ww 0.7,':;0 0.7j<:>;0
oY 1o for all existing 0.2 | for a fresh 0.

e SO0, we need to prove that given a model, if it satisfies the premises,
then it satisfies the conclusion.
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e We need to show that every step in the construction of the tableaux
Is satisfiability preserving.
e We have only four rules:

Q 3 y 0
o . /\ o . o .
agngpw O(j.:ﬁ;.ww 0.7,':;0 0.7j<:>;0
oY 1o for all existing 0.2 | for a fresh 0.

e SO0, we need to prove that given a model, if it satisfies the premises,
then it satisfies the conclusion.
e Let M =W, R, m)be amodel such that M satisfies o : p A 1.

C. Nalon Minchen, 24/10/2023



Satisfaction of Prefixed Formulae

Definition 2.5.1 Let o : v be a prefixed formula, where ¢ € WFF. Also,
let M = (W, R, n) be a Kripke structure. Finally, let > be a set of
prefixes and f : X — W be a function that assigns to each prefix a
world in M in such a way that:

e If o and o.: are prefixes, then f(o)R f(o.2); and
o lfo:ped, then M, f(o) = .
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Satisfaction of Prefixed Formulae

Definition 2.5.1 Let o : v be a prefixed formula, where ¢ € WFF. Also,
let M = (W, R, n) be a Kripke structure. Finally, let > be a set of
prefixes and f : X — W be a function that assigns to each prefix a
world in M in such a way that:

e If o and o.: are prefixes, then f(o)R f(o.2); and
o lfo:ped, then M, f(o) = .

A tableau branch is satisfiable if its set of prefixed formulae is
satisfiable. A tableau is satisfiable if it has a satisfiable branch.
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Soundness again

Remember: if ¢ ¢, then F = ¢

It is Iimportant to also remember that we are dealing with a refutational
calculus. This means that if the formula we are dealing with is valid,
then the tableau for its negation is closed. The first lemma says that
there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let 7 be a closed tableau and assume it is
satisfiable.
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there cannot be a model for a formula if its tableau is closed:
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Soundness again

Remember: if ¢ ¢, then F = ¢

It is Iimportant to also remember that we are dealing with a refutational
calculus. This means that if the formula we are dealing with is valid,
then the tableau for its negation is closed. The first lemma says that
there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let 7 be a closed tableau and assume it is
satisfiable. Because 7T is satisfiable, then by definition there is a branch in 7
that is satisfiable. Let B be such a branch of 7.
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Soundness again

Remember: if ¢ ¢, then F = ¢

It is Iimportant to also remember that we are dealing with a refutational
calculus. This means that if the formula we are dealing with is valid,
then the tableau for its negation is closed. The first lemma says that
there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let 7 be a closed tableau and assume it is
satisfiable. Because 7T is satisfiable, then by definition there is a branch in 7
that is satisfiable. Let B be such a branch of 7. Now, because 7 is closed, by
definition all branches have contradictions (a formula and its negation) at some
prefix.
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Soundness again

Remember: if ¢ ¢, then F = ¢

It is Iimportant to also remember that we are dealing with a refutational
calculus. This means that if the formula we are dealing with is valid,
then the tableau for its negation is closed. The first lemma says that
there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let 7 be a closed tableau and assume it is
satisfiable. Because 7T is satisfiable, then by definition there is a branch in 7
that is satisfiable. Let B be such a branch of 7. Now, because 7 is closed, by
definition all branches have contradictions (a formula and its negation) at some
prefix. Let o : ¢ and o : —¢ be such prefixed formulae in B.
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Soundness again

Remember: if ¢ ¢, then F = ¢

It is Iimportant to also remember that we are dealing with a refutational
calculus. This means that if the formula we are dealing with is valid,
then the tableau for its negation is closed. The first lemma says that
there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let 7 be a closed tableau and assume it is
satisfiable. Because 7T is satisfiable, then by definition there is a branch in 7
that is satisfiable. Let B be such a branch of 7. Now, because 7 is closed, by
definition all branches have contradictions (a formula and its negation) at some
prefix. Let o : ¢ and o : —¢ be such prefixed formulae in B. From the definition
of satisfiability for prefixed formulae, we have that there is a structure M such
that M, f(o) = pand M, f(o) = —¢.
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Soundness again

Remember: if ¢ ¢, then F = ¢

It is Iimportant to also remember that we are dealing with a refutational
calculus. This means that if the formula we are dealing with is valid,
then the tableau for its negation is closed. The first lemma says that
there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let 7 be a closed tableau and assume it is
satisfiable. Because 7T is satisfiable, then by definition there is a branch in 7
that is satisfiable. Let B be such a branch of 7. Now, because 7 is closed, by
definition all branches have contradictions (a formula and its negation) at some
prefix. Let o : ¢ and o : —¢ be such prefixed formulae in B. From the definition
of satisfiability for prefixed formulae, we have that there is a structure M such
that M, f(o) = ¢ and M, f(o) = —¢. By classical reasoning, M, f(o) |~ false,
which is impossible.
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Soundness again

Remember: if ¢ ¢, then F = ¢

It is Iimportant to also remember that we are dealing with a refutational
calculus. This means that if the formula we are dealing with is valid,
then the tableau for its negation is closed. The first lemma says that
there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let 7 be a closed tableau and assume it is
satisfiable. Because 7T is satisfiable, then by definition there is a branch in 7
that is satisfiable. Let B be such a branch of 7. Now, because 7 is closed, by
definition all branches have contradictions (a formula and its negation) at some
prefix. Let o : ¢ and o : —¢ be such prefixed formulae in B. From the definition
of satisfiability for prefixed formulae, we have that there is a structure M such
that M, f(o) = ¢ and M, f(o) = —¢. By classical reasoning, M, f(o) |~ false,
which is impossible. Therefore, 7 cannot be satisfiable.
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Soundness - Continued

The next lemma shows that any extension of a satisfiable tableau is
satisfiable.

Proposition 2.5.3 Let 7 be a tableau and 77 be the tableau obtained
from 7 by an application of any of the inference rules. If 7 is satisfiable,
then 7" is also satisfiable.

Proof: Let 7 be a satisfiable tableau and B one of its satisfiable branches (by
definition there is one). The proof is by cases:
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Proposition 2.5.3 Let 7 be a tableau and 77 be the tableau obtained
from 7 by an application of any of the inference rules. If 7 is satisfiable,
then 7" is also satisfiable.

Proof: Let 7 be a satisfiable tableau and B one of its satisfiable branches (by
definition there is one). The proof is by cases:

e Assume 7' was obtained from 7 by an application of the ¢ rule to a formula
in B. That is, the rule was applied to o : <> in B of T.
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Soundness - Continued

The next lemma shows that any extension of a satisfiable tableau is
satisfiable.

Proposition 2.5.3 Let 7 be a tableau and 77 be the tableau obtained
from 7 by an application of any of the inference rules. If 7 is satisfiable,
then 7" is also satisfiable.

Proof: Let 7 be a satisfiable tableau and B one of its satisfiable branches (by
definition there is one). The proof is by cases:

e Assume 7' was obtained from 7 by an application of the ¢ rule to a formula
in B. That is, the rule was applied to o : <> in B of 7. By the definition of
satisfiability, there is a model M such that M, f(o) & .
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Soundness - Continued

The next lemma shows that any extension of a satisfiable tableau is
satisfiable.

Proposition 2.5.3 Let 7 be a tableau and 77 be the tableau obtained
from 7 by an application of any of the inference rules. If 7 is satisfiable,
then 7" is also satisfiable.

Proof: Let 7 be a satisfiable tableau and B one of its satisfiable branches (by
definition there is one). The proof is by cases:

e Assume 7' was obtained from 7 by an application of the ¢ rule to a formula
in B. That is, the rule was applied to o : <> in B of 7. By the definition of
satisfiability, there is a model M such that M, f(o) = {>¢. This implies
that there is a world w’ in M such that f(o)Rw" and that M, v’ |= .
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Soundness - Continued

The next lemma shows that any extension of a satisfiable tableau is
satisfiable.

Proposition 2.5.3 Let 7 be a tableau and 77 be the tableau obtained
from 7 by an application of any of the inference rules. If 7 is satisfiable,
then 7" is also satisfiable.

Proof: Let 7 be a satisfiable tableau and B one of its satisfiable branches (by
definition there is one). The proof is by cases:

e Assume 7' was obtained from 7 by an application of the ¢ rule to a formula
in B. That is, the rule was applied to o : <> in B of 7. By the definition of
satisfiability, there is a model M such that M, f(o) = > . This implies
that there is a world w’ in M such that f(o)Rw" and that M, w’ = p. Note
that before we apply the ¢ rule, the prefix o.i is not in B.
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Soundness - Continued

The next lemma shows that any extension of a satisfiable tableau is
satisfiable.

Proposition 2.5.3 Let 7 be a tableau and 77 be the tableau obtained
from 7 by an application of any of the inference rules. If 7 is satisfiable,
then 7" is also satisfiable.

Proof: Let 7 be a satisfiable tableau and B one of its satisfiable branches (by
definition there is one). The proof is by cases:

e Assume 7' was obtained from 7 by an application of the ¢ rule to a formula
in B. That is, the rule was applied to o : <> in B of 7. By the definition of
satisfiability, there is a model M such that M, f(o) = {>¢. This implies
that there is a world w’ in M such that f(o)Rw" and that M, w’ = p. Note
that before we apply the ¢ rule, the prefix o.7 is not in 5. Now, we extend f
to f/ as follows: f’ is exactly the same as f for all prefixes in B.
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Soundness - Continued

The next lemma shows that any extension of a satisfiable tableau is
satisfiable.

Proposition 2.5.3 Let 7 be a tableau and 77 be the tableau obtained
from 7 by an application of any of the inference rules. If 7 is satisfiable,
then 7" is also satisfiable.

Proof: Let 7 be a satisfiable tableau and B one of its satisfiable branches (by
definition there is one). The proof is by cases:

e Assume 7' was obtained from 7 by an application of the ¢ rule to a formula
in B. That is, the rule was applied to o : <> in B of 7. By the definition of
satisfiability, there is a model M such that M, f(o) = {>¢. This implies
that there is a world w’ in M such that f(o)Rw" and that M, w’ = p. Note
that before we apply the ¢ rule, the prefix o.7 is not in 5. Now, we extend f
to f/ as follows: f” is exactly the same as f for all prefixes in 3. We then
add that f/(0.7) is w’.
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Soundness - Continued

The next lemma shows that any extension of a satisfiable tableau is
satisfiable.

Proposition 2.5.3 Let 7 be a tableau and 77 be the tableau obtained
from 7 by an application of any of the inference rules. If 7 is satisfiable,
then 7" is also satisfiable.

Proof: Let 7 be a satisfiable tableau and B one of its satisfiable branches (by
definition there is one). The proof is by cases:

e Assume 7' was obtained from 7 by an application of the ¢ rule to a formula
in B. That is, the rule was applied to o : <> in B of 7. By the definition of
satisfiability, there is a model M such that M, f(o) = > . This implies
that there is a world w’ in M such that f(o)Rw" and that M, w’ = p. Note
that before we apply the ¢ rule, the prefix o.7 is not in 5. Now, we extend f
to f/ as follows: f” is exactly the same as f for all prefixes in 3. We then
add that f/(c.7) is w’. From the above, we have both that f/(c)R f'(o.i) and

M, fl(0.1) = .
C. Nalon Minchen, 24/10/2023



Soundness - Continued

The next lemma shows that any extension of a satisfiable tableau is
satisfiable.

Proposition 2.5.3 Let 7 be a tableau and 77 be the tableau obtained
from 7 by an application of any of the inference rules. If 7 is satisfiable,
then 7" is also satisfiable.

Proof: Let 7 be a satisfiable tableau and B one of its satisfiable branches (by
definition there is one). The proof is by cases:

e Assume 7' was obtained from 7 by an application of the ¢ rule to a formula
in B. That is, the rule was applied to o : <> in B of 7. By the definition of
satisfiability, there is a model M such that M, f(o) = {>¢. This implies
that there is a world w’ in M such that f(o)Rw’" and that M, w’ = ¢. Note
that before we apply the ¢ rule, the prefix o.7 is not in 5. Now, we extend f
to f/ as follows: f” is exactly the same as f for all prefixes in 3. We then
add that f'(0.i) is w’. From the above, we have both that f'(o)R f/(o.7) and
M, f'(0.i) = ¢. That is, M satisfies the conclusions of the ¢ rule (using f’
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Soundness - Theorem

Theorem 2.5.4 Let o € WFF and 7 a closed tableau for . Then, ¢ is
valid.
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Soundness - Theorem

Theorem 2.5.4 Let o € WFF and 7 a closed tableau for . Then, ¢ is
valid.

Just remember now that the closed tableau for ¢ starts with 1 : —.
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Soundness - Theorem

Theorem 2.5.4 Let o € WFF and 7 a closed tableau for . Then, ¢ is
valid.

Just remember now that the closed tableau for ¢ starts with 1 : —.

Proof: (By contradiction). Assume that ¢ is not valid. Then, by definition, there
Is @ model M and a world w in M such that w does not satisfy ¢. By the
semantics of negation, M, w = —, for w in M. This means that the set

{1: —p} is satisfiable. Take M as a model and let f(1) = w. By Proposition
2.5.3, all tableaux we might get for {1 : —} are satisfiable. But, from
Proposition 2.5.2, because 7T is closed, we know that this cannot happen. It
follows that ¢ Is valid.
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Completeness

Definition 2.5.5 A tableau is saturated if no further rules can be
applied.

Proposition (Page 61) All tableaux constructions are terminating.
Sketch: If the construction is systematic, this is easy to prove. We have

already defined a systematic construction: use « and § rules first; then apply
0; and finally apply ~. Note that all steps consist of adding subformulae to the
tableau and the number of subformulae of a formula is finite.
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Completeness - Continued

Theorem 2.5.7 Let o € WFF. If ¢ is valid, then there is a closed
tableau for .

Proof: We take the contrapositive: If © has an open tableau, then ¢ is not
valid.
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Completeness - Continued

Theorem 2.5.7 Let o € WFF. If ¢ is valid, then there is a closed
tableau for .

Proof: We take the contrapositive: If © has an open tableau, then ¢ is not
valid. Assume that ¢ has an open (saturated) tableau 7. We show how to
construct a model from this tableau. Take a branch B which is open in 7. Let
M be as follows:

e W={o|o:peB}.
e if o and 0.7 occurin B, then set o Ro.i

e Ifo:p,forpeP,occurin B, then set (o, p) = true; otherwise
7(o, p) = false.

This construction is correct, that is, the built model is indeed a model for 5.
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Example: [ |{(p v q) — (Up v Llg)

Negate: —([J(p v q) — (CIp v (g)). NNF:[C(p v q) A (O—p A $—q)

(1) 1:Op v q) A (O—p A >—q) [neg. assumption]
2) 1:p v q) [, 1]

(
3) 1: O—pard—g [a1]
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(pvq) A ($=p A P—0)

7). NNF:

D Vv

(pvaq) —(
(1) 1:Op v q) A (O—p A >—q) [neg. assumption]

Negate: —(

[a, 1]

2) 1:Opvq)
(3) 1: G—p A O—g

[av, 1]

(4) 1:<>_'p [0473]

(5) 1:<>ﬁq [()4,3]

[0, 4]

(6) 1.1: —p

[9,5]

(10) 1.2: —g

Muinchen, 24/10/2023

C. Nalon



=
[]
>
o
o
!
=
>
=
[]
@
o
S
S
>
"

(pvq) A ($=p A P—0)

7). NNF:

D Vv

(pvaq) —(
(1) 1:Op v q) A (O—p A >—q) [neg. assumption]

Negate: —(

[a, 1]

2) 1:Opvq)
(3) 1: G—p A O—g

[av, 1]

(4) 1:<>_'p [0473]

{1,1.1,1.2}

14%

(5) 1:<>ﬁq [()4,3]

[0, 4]

(6) 1.1: —p

[9,5]

(10) 1.2: —g

Muinchen, 24/10/2023

C. Nalon



Example: [ |{(p v q) — (Up v Llg)

Negate: —([J(p v q) — (CIp v (g)). NNF:[C(p v q) A (O—p A $—q)

(1) 1:0Opvg) A (O—pa<$—g) [neg. assumption]

@ 1:Upve  [a]]

B) 1: O=pA =g [o]]
(4) 1: O—p [o,3]
(5) 1: O—qg [e, 3] W ={1,1.1,1.2}
(6) 1.1:—p [0,4] R ={(1,1.1),(1,1.2)}
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Example: [ 1(p v q) —

Negate: —(

(pvaq) —(
(1) 1:0Ov @) A (O—paP—g)

2) 1:(pv ) [, 1]
[, 1]

D Vv

(
(3)

8) 1.1:p [B,7] (9 11:q [B,7]
X (10) 1.2: —=q [9,5]
(11) 1.2:pvq [v,2]
(12) 1.2:p [6,11] (13) 1
C. Nalon

(Clp v [g)

7). NNF:

[neg. assumption]

15, 11]

(pv @) A (Q=p A=)
W ={1,1.1,1.2}
R ={(1,1.1),(1,1.2)}
( p) = (1, q) = false
,p) = m(1.2,q) = false
m(1.1,q) = true
m(1.2,p) = true
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Example: [ |{(p v q) — (Up v Llg)

Negate: —([J(p v q) — (CIp v (g)). NNF:[C(p v q) A (O—p A $—q)

(1) 1:Op v q) A (O—p A >—q) [neg. assumption]
2) 1:p v q) [, 1]

(
)

B) 1: >par =g [a1]
(4) 1:<>_'p [0473]
5) 1: &g [, 3] W =1{1,1.1,1.2}
(6) 1.1: —p [6,4] R ={(1,1.1),(1,1.2)}
) 1'1:pvq\[%2] m(1,p) = 7(1,q) = false
8 11:p [5,7 (9 11:q [B,7] wlLoll i) = w2y ) = ke
X (10) 1.2: —¢ [4,5] m(1.1,q) = true
(11) 1.2:pvaq [7,2] 7(1.2,p) = true
/ M,1E=LIpve)M1ELpvLlg
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This is just one part of the story...

... better: this is just part one of the story... ... that is, the part of the
story where n = 1.

What do you need to extend the calculi for multimodal logics?

We start with the easy part: the axiomatic system.

Taut enough propositional tautologies.
K [lp =) - (e — [d).
and

SUB Uniform substitution: and
MP If - pand ¢ — v, then - v.
Nec If ¢, then - [<]p
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This is just one part of the story...

... better: this is just part one of the story... ... that is, the part of the
story where n = 1.

What do you need to extend the calculi for multimodal logics?

We start with the easy part: the axiomatic system.

Taut enough propositional tautologies.
K [lp =) - (e — [d).
and

SUB Uniform substitution: and
MP If - pand ¢ — v, then - v.
Nec If ¢, then - [<]p
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Tableaux for multimodal logics

Q 5] y 0
o:pAY oL lp o:
o o.1: Y o.1: Y
; for all existing 0.2 | for a fresh .1
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Tableaux for multimodal logics

Q o] y 0
gAY oy o <@
o, o.lali : o.lali: ¢
- for all existing o.|a]¢ | for a fresh o.[ali
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O (@p v @q) A (CIEp v [Cg)
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To be continued.



Some Other Usual Modal Logics

Different restrictions
on the accessibllity
relations R, define
different modal
logics:

e No restrictions:
Kn;
Reflexive: KT,,;
Transitive: K4, ;
Euclidean: K5, ;
Serial: KD,,;
Symmetric: KB,,;
Reflexive and
Transitive: S4.,;
e Reflexive and
Euclidean: S5,,;

C. N@lon . . . MUnchen, 24/10/2023
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