
Modal Logic: Overview

Cláudia Nalon

Department of Computer Science

University of Brasília

LMU, The Modal Logic Sessions

The Basics

The last session

C. Nalon München, 24/10/2023

‚ Modal logics: syntax and semantics

‚ Invariance results: for Kn, the class of models is restricted to finite

trees.

‚ Decidability: PSPACE-complete

Calculi for Modal Logics

Notation and Properties

C. Nalon München, 24/10/2023

‚ A calculus for a logic L is a pair xA,RyL, where A Ď WFFL and

R Ď p2WFFL ˆWFFLq.

‚ P “ x y
P ď ď

“ P t ´ u

$
‚ P Ď “ x y

P ď ď “ P Y
t ´ u

$

Notation and Properties

C. Nalon München, 24/10/2023

‚ A calculus for a logic L is a pair xA,RyL, where A Ď WFFL and

R Ď p2WFFL ˆWFFLq.
‚ Let ϕ P WFFL. Let C “ xA,RyL be a calculus. A proof for ϕ is a

sequence of formulae ϕ0, ϕ1, . . . , ϕn, ϕi P WFFL, 1 ď i ď n, where

ϕ “ ϕn and, for each ϕi, ϕi P A or was obtained from tϕ0, . . . , ϕi´1u
by an application of a rule in R. If there is a proof for ϕ, then ϕ is a

theorem.

$
‚ P Ď “ x y

P ď ď “ P Y
t ´ u

$

Notation and Properties

C. Nalon München, 24/10/2023

‚ A calculus for a logic L is a pair xA,RyL, where A Ď WFFL and

R Ď p2WFFL ˆWFFLq.
‚ Let ϕ P WFFL. Let C “ xA,RyL be a calculus. A proof for ϕ is a

sequence of formulae ϕ0, ϕ1, . . . , ϕn, ϕi P WFFL, 1 ď i ď n, where

ϕ “ ϕn and, for each ϕi, ϕi P A or was obtained from tϕ0, . . . , ϕi´1u
by an application of a rule in R. If there is a proof for ϕ, then ϕ is a

theorem. Notation: $C ϕ.

‚ P Ď “ x y

P ď ď “ P Y
t ´ u

$

Notation and Properties

C. Nalon München, 24/10/2023

‚ A calculus for a logic L is a pair xA,RyL, where A Ď WFFL and

R Ď p2WFFL ˆWFFLq.
‚ Let ϕ P WFFL. Let C “ xA,RyL be a calculus. A proof for ϕ is a

sequence of formulae ϕ0, ϕ1, . . . , ϕn, ϕi P WFFL, 1 ď i ď n, where

ϕ “ ϕn and, for each ϕi, ϕi P A or was obtained from tϕ0, . . . , ϕi´1u
by an application of a rule in R. If there is a proof for ϕ, then ϕ is a

theorem. Notation: $C ϕ.

‚ Let ϕ P WFFL and Γ Ď WFFL. Let C “ xA,RyL be a calculus. A

proof for ϕ from Γ is a sequence of formulae ϕ0, ϕ1, . . . , ϕn,

ϕi P WFFL, 1 ď i ď n, where ϕ “ ϕn and, for each ϕi, ϕi P AY Γ or

was obtained from tϕ0, . . . , ϕi´1u by an application of a rule in R. If

there is a proof for ϕ from Γ, then ϕ is a demonstration.

$

Notation and Properties

C. Nalon München, 24/10/2023

‚ A calculus for a logic L is a pair xA,RyL, where A Ď WFFL and

R Ď p2WFFL ˆWFFLq.
‚ Let ϕ P WFFL. Let C “ xA,RyL be a calculus. A proof for ϕ is a

sequence of formulae ϕ0, ϕ1, . . . , ϕn, ϕi P WFFL, 1 ď i ď n, where

ϕ “ ϕn and, for each ϕi, ϕi P A or was obtained from tϕ0, . . . , ϕi´1u
by an application of a rule in R. If there is a proof for ϕ, then ϕ is a

theorem. Notation: $C ϕ.

‚ Let ϕ P WFFL and Γ Ď WFFL. Let C “ xA,RyL be a calculus. A

proof for ϕ from Γ is a sequence of formulae ϕ0, ϕ1, . . . , ϕn,

ϕi P WFFL, 1 ď i ď n, where ϕ “ ϕn and, for each ϕi, ϕi P AY Γ or

was obtained from tϕ0, . . . , ϕi´1u by an application of a rule in R. If

there is a proof for ϕ from Γ, then ϕ is a demonstration. Notation:

Γ $C ϕ.

Properties of Calculi

C. Nalon München, 24/10/2023

‚ Soundness: if Γ $C ϕ, then Γ |ùL ϕ.

‚ |ù $
‚ $ 1 1

1 $
‚ “ t u P $

$ Ñ p Ñ p Ñ qq
‚ & K
‚

Properties of Calculi

C. Nalon München, 24/10/2023

‚ Soundness: if Γ $C ϕ, then Γ |ùL ϕ.

‚ Completeness: if Γ |ùL ϕ, then Γ $C ϕ.

‚ $ 1 1
1 $

‚ “ t u P $
$ Ñ p Ñ p Ñ qq

‚ & K
‚

Properties of Calculi

C. Nalon München, 24/10/2023

‚ Soundness: if Γ $C ϕ, then Γ |ùL ϕ.

‚ Completeness: if Γ |ùL ϕ, then Γ $C ϕ.

‚ Compactness: if Γ $C ϕ, then there is Γ
1, where Γ

1 is finite and

Γ
1 $C ϕ.

‚ “ t u P $
$ Ñ p Ñ p Ñ qq

‚ & K
‚

Properties of Calculi

C. Nalon München, 24/10/2023

‚ Soundness: if Γ $C ϕ, then Γ |ùL ϕ.

‚ Completeness: if Γ |ùL ϕ, then Γ $C ϕ.

‚ Compactness: if Γ $C ϕ, then there is Γ
1, where Γ

1 is finite and

Γ
1 $C ϕ.

‚ Deduction theorem: let Γ “ tγ0, . . . , γiu for some i P N. If Γ $C ϕ,

then $C γ0 Ñ p. . .Ñ pγi Ñ ϕqq.

‚ & K
‚

Properties of Calculi

C. Nalon München, 24/10/2023

‚ Soundness: if Γ $C ϕ, then Γ |ùL ϕ.

‚ Completeness: if Γ |ùL ϕ, then Γ $C ϕ.

‚ Compactness: if Γ $C ϕ, then there is Γ
1, where Γ

1 is finite and

Γ
1 $C ϕ.

‚ Deduction theorem: let Γ “ tγ0, . . . , γiu for some i P N. If Γ $C ϕ,

then $C γ0 Ñ p. . .Ñ pγi Ñ ϕqq.
‚ Consistency: Γ is C-consistent if, and only if, Γ &C K.

‚

Properties of Calculi

C. Nalon München, 24/10/2023

‚ Soundness: if Γ $C ϕ, then Γ |ùL ϕ.

‚ Completeness: if Γ |ùL ϕ, then Γ $C ϕ.

‚ Compactness: if Γ $C ϕ, then there is Γ
1, where Γ

1 is finite and

Γ
1 $C ϕ.

‚ Deduction theorem: let Γ “ tγ0, . . . , γiu for some i P N. If Γ $C ϕ,

then $C γ0 Ñ p. . .Ñ pγi Ñ ϕqq.
‚ Consistency: Γ is C-consistent if, and only if, Γ &C K.

‚ Termination, convergence, etc.

Axiomatisation

C. Nalon München, 24/10/2023

Taut enough propositional tautologies.

K lpϕÑ ψq Ñ plϕÑ lψq.
and

SUB Uniform substitution; and

MP If $ ϕ and $ ϕÑ ψ, then $ ψ.

Nec If $ ϕ, then $ lϕ

Ø l

l

Axiomatisation

C. Nalon München, 24/10/2023

Taut enough propositional tautologies.

K lpϕÑ ψq Ñ plϕÑ lψq.
and

SUB Uniform substitution; and

MP If $ ϕ and $ ϕÑ ψ, then $ ψ.

Nec If $ ϕ, then $ lϕ
You can also add:

Dual ♦ϕØ l ϕ
to the set of axioms, but it is not needed if you restrict the language to

only one modal operator l and take ♦ as an abbreviation.

Example: lpp^ qq Ñ lp

C. Nalon München, 24/10/2023

1. p^ q Ñ p [Taut]

lpp ^ q Ñ q
lpp ^ q Ñ q Ñ plp ^ q Ñ l q “ p ^ q “
lp ^ q Ñ l

Example: lpp^ qq Ñ lp

C. Nalon München, 24/10/2023

1. p^ q Ñ p [Taut]

2. lppp^ qq Ñ pq [Nec]

lpp ^ q Ñ q Ñ plp ^ q Ñ l q “ p ^ q “
lp ^ q Ñ l

Example: lpp^ qq Ñ lp

C. Nalon München, 24/10/2023

1. p^ q Ñ p [Taut]

2. lppp^ qq Ñ pq [Nec]

3. lppp^ qq Ñ pq Ñ plpp^ qq Ñ lpq [K,ϕ “ pp^ qq,ψ “ p]

lp ^ q Ñ l

Example: lpp^ qq Ñ lp

C. Nalon München, 24/10/2023

1. p^ q Ñ p [Taut]

2. lppp^ qq Ñ pq [Nec]

3. lppp^ qq Ñ pq Ñ plpp^ qq Ñ lpq [K,ϕ “ pp^ qq,ψ “ p]

4. lpp^ qq Ñ lp [MP,2,3]

Tableaux

C. Nalon München, 24/10/2023

‚ It is an analytic method: we “destroy” formulae when applying the

inference rules. This means that termination (for some logics) is

easy to achieve, as the obtained conclusions for each inference rule

are “smaller” than its premisses.

‚
‚

‚
‚

‚

 l “ “ l

Tableaux

C. Nalon München, 24/10/2023

‚ It is an analytic method: we “destroy” formulae when applying the

inference rules. This means that termination (for some logics) is

easy to achieve, as the obtained conclusions for each inference rule

are “smaller” than its premisses.

‚ The resulting construction is a tree.

‚

‚
‚

‚

 l “ “ l

Tableaux

C. Nalon München, 24/10/2023

‚ It is an analytic method: we “destroy” formulae when applying the

inference rules. This means that termination (for some logics) is

easy to achieve, as the obtained conclusions for each inference rule

are “smaller” than its premisses.

‚ The resulting construction is a tree.

‚ It corresponds to reasoning by contradiction: we start by negating

what we want to prove; if all the branches of a tree leads to

contradiction, we have a proof.

‚
‚

‚

 l “ “ l

Tableaux

C. Nalon München, 24/10/2023

‚ It is an analytic method: we “destroy” formulae when applying the

inference rules. This means that termination (for some logics) is

easy to achieve, as the obtained conclusions for each inference rule

are “smaller” than its premisses.

‚ The resulting construction is a tree.

‚ It corresponds to reasoning by contradiction: we start by negating

what we want to prove; if all the branches of a tree leads to

contradiction, we have a proof.

‚ We will be using Fitting’s construction: there are many others.

‚

‚

 l “ “ l

Tableaux

C. Nalon München, 24/10/2023

‚ It is an analytic method: we “destroy” formulae when applying the

inference rules. This means that termination (for some logics) is

easy to achieve, as the obtained conclusions for each inference rule

are “smaller” than its premisses.

‚ The resulting construction is a tree.

‚ It corresponds to reasoning by contradiction: we start by negating

what we want to prove; if all the branches of a tree leads to

contradiction, we have a proof.

‚ We will be using Fitting’s construction: there are many others.

‚ It uses the notion of prefixes to label formulae in the tree: prefixes

correspond to paths in a model.

‚

 l “ “ l

Tableaux

C. Nalon München, 24/10/2023

‚ It is an analytic method: we “destroy” formulae when applying the

inference rules. This means that termination (for some logics) is

easy to achieve, as the obtained conclusions for each inference rule

are “smaller” than its premisses.

‚ The resulting construction is a tree.

‚ It corresponds to reasoning by contradiction: we start by negating

what we want to prove; if all the branches of a tree leads to

contradiction, we have a proof.

‚ We will be using Fitting’s construction: there are many others.

‚ It uses the notion of prefixes to label formulae in the tree: prefixes

correspond to paths in a model.

‚ We will consider that formulae are in Negation Normal Form:

negation is applied only to propositional symbols, conjunctions and

disjunctions are the only classical connectives allowed;

 l “ “ l

Tableaux

C. Nalon München, 24/10/2023

‚ It is an analytic method: we “destroy” formulae when applying the

inference rules. This means that termination (for some logics) is

easy to achieve, as the obtained conclusions for each inference rule

are “smaller” than its premisses.

‚ The resulting construction is a tree.

‚ It corresponds to reasoning by contradiction: we start by negating

what we want to prove; if all the branches of a tree leads to

contradiction, we have a proof.

‚ We will be using Fitting’s construction: there are many others.

‚ It uses the notion of prefixes to label formulae in the tree: prefixes

correspond to paths in a model.

‚ We will consider that formulae are in Negation Normal Form:

negation is applied only to propositional symbols, conjunctions and

disjunctions are the only classical connectives allowed; for boxes

and diamonds, we move negation inwards using the equivalences:

 lϕ “ ♦ ϕ and ♦ϕ “ l ϕ

Example - NNF

C. Nalon München, 24/10/2023

Suppose we want to prove:

lpp^ qq Ñ plp^lqq
We start by negating it (because this is a method by contradiction):

 plpp^ qq Ñ plp^lqqq
and proceed to transform it in its NNF:

 plpp^ qqÑplp^lqqq “ lpp^ qq ^ plp^lqq

“ lp ^ q ^ p l _ l q
“ lp ^ q ^ p _ q

Example - NNF

C. Nalon München, 24/10/2023

Suppose we want to prove:

lpp^ qq Ñ plp^lqq
We start by negating it (because this is a method by contradiction):

 plpp^ qq Ñ plp^lqqq
and proceed to transform it in its NNF:

 plpp^ qqÑplp^lqqq “ lpp^ qq ^ plp^lqq
“ lpp^ qq ^ p lp_ lqq

“ lp ^ q ^ p _ q

Example - NNF

C. Nalon München, 24/10/2023

Suppose we want to prove:

lpp^ qq Ñ plp^lqq
We start by negating it (because this is a method by contradiction):

 plpp^ qq Ñ plp^lqqq
and proceed to transform it in its NNF:

 plpp^ qqÑplp^lqqq “ lpp^ qq ^ plp^lqq
“ lpp^ qq ^ p lp_ lqq
“ lpp^ qq ^ p♦ p_♦ qq

The Rules

C. Nalon München, 24/10/2023

There are four kinds of rules. In the literature they are often refered as

α, β, γ, and δ rules.

^ _
|

l

The Rules

C. Nalon München, 24/10/2023

There are four kinds of rules. In the literature they are often refered as

α, β, γ, and δ rules.

α : applied to conjunctive formulae

β : applied to disjunctive formulae

γ : applied to universal formulae

δ : applied to existential formulae

^ _
|

l

The Rules

C. Nalon München, 24/10/2023

There are four kinds of rules. In the literature they are often refered as

α, β, γ, and δ rules.

α : applied to conjunctive formulae

β : applied to disjunctive formulae

γ : applied to universal formulae

δ : applied to existential formulae

α β γ δ

σ : ϕ^ ψ
σ : ϕ

σ : ψ

σ : ϕ_ ψ
σ : ϕ | σ : ψ

σ : lϕ
σ.i : ϕ

for all existing σ.i

σ : ♦ϕ

σ.i : ϕ

for a fresh σ.i

The Rules

C. Nalon München, 24/10/2023

There are four kinds of rules. In the literature they are often refered as

α, β, γ, and δ rules.

α : applied to conjunctive formulae

β : applied to disjunctive formulae

γ : applied to universal formulae

δ : applied to existential formulae

α β γ δ

σ : ϕ^ ψ
σ : ϕ

σ : ψ

σ : ϕ_ ψ
σ : ϕ | σ : ψ

σ : lϕ
σ.i : ϕ

for all existing σ.i

σ : ♦ϕ

σ.i : ϕ

for a fresh σ.i

This calculus is not confluent: you need to apply all the α and β rules

before applying the δ rules. The γ rules should be applied last.

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

lp ^ q r s
 _ r s

 r s r s
 r s
^ r s

r s

 r s
^ r s

r s

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

lp ^ q r s
 _ r s

 r s r s
 r s
^ r s

r s

 r s
^ r s

r s

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

1: lpp^ qq(2) rα, 1s
1: ♦ p_♦ q(3) rα, 1s

 r s r s
 r s
^ r s

r s

 r s
^ r s

r s

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

1: lpp^ qq(2) rα, 1s
1: ♦ p_♦ q(3) rα, 1s

1: ♦ p(4) rβ, 3s 1: ♦ q(5) rβ, 3s

 r s
^ r s

r s

 r s
^ r s

r s

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

1: lpp^ qq(2) rα, 1s
1: ♦ p_♦ q(3) rα, 1s

1: ♦ p(4) rβ, 3s 1: ♦ q(5) rβ, 3s
1.1: p(6) rδ, 4s

^ r s
r s

 r s
^ r s

r s

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

1: lpp^ qq(2) rα, 1s
1: ♦ p_♦ q(3) rα, 1s

1: ♦ p(4) rβ, 3s 1: ♦ q(5) rβ, 3s
1.1: p(6) rδ, 4s

1.1: p^ q(7) rγ, 2s

r s

 r s
^ r s

r s

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

1: lpp^ qq(2) rα, 1s
1: ♦ p_♦ q(3) rα, 1s

1: ♦ p(4) rβ, 3s 1: ♦ q(5) rβ, 3s
1.1: p(6) rδ, 4s

1.1: p^ q(7) rγ, 2s
1.1: p(8) rα, 7s

 r s
^ r s

r s

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

1: lpp^ qq(2) rα, 1s
1: ♦ p_♦ q(3) rα, 1s

1: ♦ p(4) rβ, 3s 1: ♦ q(5) rβ, 3s
1.1: p(6) rδ, 4s

1.1: p^ q(7) rγ, 2s
1.1: p(8) rα, 7s
X

 r s
^ r s

r s

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

1: lpp^ qq(2) rα, 1s
1: ♦ p_♦ q(3) rα, 1s

1: ♦ p(4) rβ, 3s 1: ♦ q(5) rβ, 3s
1.1: p(6) rδ, 4s

1.1: p^ q(7) rγ, 2s
1.1: p(8) rα, 7s
X

1.2: q(9) rδ, 5s

^ r s
r s

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

1: lpp^ qq(2) rα, 1s
1: ♦ p_♦ q(3) rα, 1s

1: ♦ p(4) rβ, 3s 1: ♦ q(5) rβ, 3s
1.1: p(6) rδ, 4s

1.1: p^ q(7) rγ, 2s
1.1: p(8) rα, 7s
X

1.2: q(9) rδ, 5s
1.2: p^ q(10) rγ, 2s

r s

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

1: lpp^ qq(2) rα, 1s
1: ♦ p_♦ q(3) rα, 1s

1: ♦ p(4) rβ, 3s 1: ♦ q(5) rβ, 3s
1.1: p(6) rδ, 4s

1.1: p^ q(7) rγ, 2s
1.1: p(8) rα, 7s
X

1.2: q(9) rδ, 5s
1.2: p^ q(10) rγ, 2s

1.2: q(11) rα, 10s

Back to the Example

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp^ qq Ñ plp^lqq:
We start by negating it: plpp^ qq Ñ plp^lqqq
and putting it into its NNF: lpp^ qq ^ p♦ p_♦ qq
Now we can start the tableaux construction:

1: lpp^ qq ^ p♦ p_♦ qq(1) [neg. assumption]

1: lpp^ qq(2) rα, 1s
1: ♦ p_♦ q(3) rα, 1s

1: ♦ p(4) rβ, 3s 1: ♦ q(5) rβ, 3s
1.1: p(6) rδ, 4s

1.1: p^ q(7) rγ, 2s
1.1: p(8) rα, 7s
X

1.2: q(9) rδ, 5s
1.2: p^ q(10) rγ, 2s

1.2: q(11) rα, 10s
X

Example - II

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp_ qq Ñ plp_lqq:
We start by negating it: plpp_ qq Ñ plp_lqqq
and putting it into its NNF: lpp_ qq ^ p♦ p^♦ qq
Now we can start the tableaux construction:

1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

lp _ q r s
 ^ r s

 r s
 r s
 r s
_ r s

r s r s

Example - II

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp_ qq Ñ plp_lqq:
We start by negating it: plpp_ qq Ñ plp_lqqq
and putting it into its NNF: lpp_ qq ^ p♦ p^♦ qq
Now we can start the tableaux construction:

1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

lp _ q r s
 ^ r s

 r s
 r s
 r s
_ r s

r s r s

Example - II

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp_ qq Ñ plp_lqq:
We start by negating it: plpp_ qq Ñ plp_lqqq
and putting it into its NNF: lpp_ qq ^ p♦ p^♦ qq
Now we can start the tableaux construction:

1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

 r s
 r s
 r s
_ r s

r s r s

Example - II

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp_ qq Ñ plp_lqq:
We start by negating it: plpp_ qq Ñ plp_lqqq
and putting it into its NNF: lpp_ qq ^ p♦ p^♦ qq
Now we can start the tableaux construction:

1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

1: ♦ p(4) rα, 3s
1: ♦ q(5) rα, 3s

 r s
_ r s

r s r s

Example - II

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp_ qq Ñ plp_lqq:
We start by negating it: plpp_ qq Ñ plp_lqqq
and putting it into its NNF: lpp_ qq ^ p♦ p^♦ qq
Now we can start the tableaux construction:

1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

1: ♦ p(4) rα, 3s
1: ♦ q(5) rα, 3s
1.1: p(6) rδ, 4s

_ r s
r s r s

Example - II

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp_ qq Ñ plp_lqq:
We start by negating it: plpp_ qq Ñ plp_lqqq
and putting it into its NNF: lpp_ qq ^ p♦ p^♦ qq
Now we can start the tableaux construction:

1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

1: ♦ p(4) rα, 3s
1: ♦ q(5) rα, 3s
1.1: p(6) rδ, 4s

1.1: p_ q(7) rγ, 2s

r s r s

Example - II

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp_ qq Ñ plp_lqq:
We start by negating it: plpp_ qq Ñ plp_lqqq
and putting it into its NNF: lpp_ qq ^ p♦ p^♦ qq
Now we can start the tableaux construction:

1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

1: ♦ p(4) rα, 3s
1: ♦ q(5) rα, 3s
1.1: p(6) rδ, 4s

1.1: p_ q(7) rγ, 2s
1.1: p(8) rβ, 7s 1.1: q(9) rβ, 7s

Example - II

C. Nalon München, 24/10/2023

Suppose we want to prove: lpp_ qq Ñ plp_lqq:
We start by negating it: plpp_ qq Ñ plp_lqqq
and putting it into its NNF: lpp_ qq ^ p♦ p^♦ qq
Now we can start the tableaux construction:

1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

1: ♦ p(4) rα, 3s
1: ♦ q(5) rα, 3s
1.1: p(6) rδ, 4s

1.1: p_ q(7) rγ, 2s
1.1: p(8) rβ, 7s 1.1: q(9) rβ, 7s
X

Example - III

C. Nalon München, 24/10/2023

(1) 1. plppÑ qq Ñ plpÑ lqqq

lp Ñ q r s
 pl Ñ l q r s

l r s
 l r s
 r s
Ñ r s

r s

 r s r s

Example - III

C. Nalon München, 24/10/2023

(1) 1. plppÑ qq Ñ plpÑ lqqq
(2) 1. lppÑ qq rα, 1s

(3) 1. plpÑ lqq rα, 1s

l r s
 l r s
 r s
Ñ r s

r s

 r s r s

Example - III

C. Nalon München, 24/10/2023

(1) 1. plppÑ qq Ñ plpÑ lqqq
(2) 1. lppÑ qq rα, 1s

(3) 1. plpÑ lqq rα, 1s
(4) 1. lp rα, 3s

(5) 1. lq rα, 3s

 r s
Ñ r s

r s

 r s r s

Example - III

C. Nalon München, 24/10/2023

(1) 1. plppÑ qq Ñ plpÑ lqqq
(2) 1. lppÑ qq rα, 1s

(3) 1. plpÑ lqq rα, 1s
(4) 1. lp rα, 3s

(5) 1. lq rα, 3s
(6) 1.1. q rδ, 5s

Ñ r s
r s

 r s r s

Example - III

C. Nalon München, 24/10/2023

(1) 1. plppÑ qq Ñ plpÑ lqqq
(2) 1. lppÑ qq rα, 1s

(3) 1. plpÑ lqq rα, 1s
(4) 1. lp rα, 3s

(5) 1. lq rα, 3s
(6) 1.1. q rδ, 5s

(7) 1.1. pÑ q rγ, 2s
(8) 1.1. p rγ, 4s

 r s r s

Example - III

C. Nalon München, 24/10/2023

(1) 1. plppÑ qq Ñ plpÑ lqqq
(2) 1. lppÑ qq rα, 1s

(3) 1. plpÑ lqq rα, 1s
(4) 1. lp rα, 3s

(5) 1. lq rα, 3s
(6) 1.1. q rδ, 5s

(7) 1.1. pÑ q rγ, 2s
(8) 1.1. p rγ, 4s

(9) 1.1. p rβ, 7s (9) 1.1. q rβ, 7s

Soundness

C. Nalon München, 24/10/2023

‚ We need to show that every step in the construction of the tableaux

is satisfiability preserving.

‚ We have only four rules:

α β γ δ

σ : ϕ^ ψ
σ : ϕ

σ : ψ

σ : ϕ_ ψ
σ : ϕ | σ : ψ

σ : lϕ
σ.i : ϕ

for all existing σ.i

σ : ♦ϕ

σ.i : ϕ

for a fresh σ.i

‚ So, we need to prove that given a model, if it satisfies the premises,

then it satisfies the conclusion.

‚ “ x y ^

Soundness

C. Nalon München, 24/10/2023

‚ We need to show that every step in the construction of the tableaux

is satisfiability preserving.

‚ We have only four rules:

α β γ δ

σ : ϕ^ ψ
σ : ϕ

σ : ψ

σ : ϕ_ ψ
σ : ϕ | σ : ψ

σ : lϕ
σ.i : ϕ

for all existing σ.i

σ : ♦ϕ

σ.i : ϕ

for a fresh σ.i

‚ So, we need to prove that given a model, if it satisfies the premises,

then it satisfies the conclusion.

‚ Let M “ xW , R, πy be a model such that M satisfies σ : ϕ^ ψ.

Satisfaction of Prefixed Formulae

C. Nalon München, 24/10/2023

Definition 2.5.1 Let σ : ϕ be a prefixed formula, where ϕ P WFF. Also,

let M “ xW ,R, πy be a Kripke structure. Finally, let Σ be a set of

prefixes and f : Σ ÝÑW be a function that assigns to each prefix a

world in M in such a way that:

‚ If σ and σ.i are prefixes, then fpσqRfpσ.iq; and

‚ If σ : ϕ P Σ, then M, fpσq |ù ϕ.

Satisfaction of Prefixed Formulae

C. Nalon München, 24/10/2023

Definition 2.5.1 Let σ : ϕ be a prefixed formula, where ϕ P WFF. Also,

let M “ xW ,R, πy be a Kripke structure. Finally, let Σ be a set of

prefixes and f : Σ ÝÑW be a function that assigns to each prefix a

world in M in such a way that:

‚ If σ and σ.i are prefixes, then fpσqRfpσ.iq; and

‚ If σ : ϕ P Σ, then M, fpσq |ù ϕ.

A tableau branch is satisfiable if its set of prefixed formulae is

satisfiable. A tableau is satisfiable if it has a satisfiable branch.

Soundness again

C. Nalon München, 24/10/2023

Remember: if $C ϕ, then F |ù ϕ

It is important to also remember that we are dealing with a refutational

calculus. This means that if the formula we are dealing with is valid,

then the tableau for its negation is closed. The first lemma says that

there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let T be a closed tableau and assume it is

satisfiable.

p q |ù p q |ù p q |ù

Soundness again

C. Nalon München, 24/10/2023

Remember: if $C ϕ, then F |ù ϕ

It is important to also remember that we are dealing with a refutational

calculus. This means that if the formula we are dealing with is valid,

then the tableau for its negation is closed. The first lemma says that

there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let T be a closed tableau and assume it is

satisfiable. Because T is satisfiable, then by definition there is a branch in T

that is satisfiable.

p q |ù p q |ù p q |ù

Soundness again

C. Nalon München, 24/10/2023

Remember: if $C ϕ, then F |ù ϕ

It is important to also remember that we are dealing with a refutational

calculus. This means that if the formula we are dealing with is valid,

then the tableau for its negation is closed. The first lemma says that

there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let T be a closed tableau and assume it is

satisfiable. Because T is satisfiable, then by definition there is a branch in T

that is satisfiable. Let B be such a branch of T .

p q |ù p q |ù p q |ù

Soundness again

C. Nalon München, 24/10/2023

Remember: if $C ϕ, then F |ù ϕ

It is important to also remember that we are dealing with a refutational

calculus. This means that if the formula we are dealing with is valid,

then the tableau for its negation is closed. The first lemma says that

there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let T be a closed tableau and assume it is

satisfiable. Because T is satisfiable, then by definition there is a branch in T

that is satisfiable. Let B be such a branch of T . Now, because T is closed, by

definition all branches have contradictions (a formula and its negation) at some

prefix.

p q |ù p q |ù p q |ù

Soundness again

C. Nalon München, 24/10/2023

Remember: if $C ϕ, then F |ù ϕ

It is important to also remember that we are dealing with a refutational

calculus. This means that if the formula we are dealing with is valid,

then the tableau for its negation is closed. The first lemma says that

there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let T be a closed tableau and assume it is

satisfiable. Because T is satisfiable, then by definition there is a branch in T

that is satisfiable. Let B be such a branch of T . Now, because T is closed, by

definition all branches have contradictions (a formula and its negation) at some

prefix. Let σ : ϕ and σ : ϕ be such prefixed formulae in B.

p q |ù p q |ù p q |ù

Soundness again

C. Nalon München, 24/10/2023

Remember: if $C ϕ, then F |ù ϕ

It is important to also remember that we are dealing with a refutational

calculus. This means that if the formula we are dealing with is valid,

then the tableau for its negation is closed. The first lemma says that

there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let T be a closed tableau and assume it is

satisfiable. Because T is satisfiable, then by definition there is a branch in T

that is satisfiable. Let B be such a branch of T . Now, because T is closed, by

definition all branches have contradictions (a formula and its negation) at some

prefix. Let σ : ϕ and σ : ϕ be such prefixed formulae in B. From the definition

of satisfiability for prefixed formulae, we have that there is a structure M such

that M, fpσq |ù ϕ and M, fpσq |ù ϕ.

p q |ù

Soundness again

C. Nalon München, 24/10/2023

Remember: if $C ϕ, then F |ù ϕ

It is important to also remember that we are dealing with a refutational

calculus. This means that if the formula we are dealing with is valid,

then the tableau for its negation is closed. The first lemma says that

there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let T be a closed tableau and assume it is

satisfiable. Because T is satisfiable, then by definition there is a branch in T

that is satisfiable. Let B be such a branch of T . Now, because T is closed, by

definition all branches have contradictions (a formula and its negation) at some

prefix. Let σ : ϕ and σ : ϕ be such prefixed formulae in B. From the definition

of satisfiability for prefixed formulae, we have that there is a structure M such

that M, fpσq |ù ϕ and M, fpσq |ù ϕ. By classical reasoning, M, fpσq |ù false,

which is impossible.

Soundness again

C. Nalon München, 24/10/2023

Remember: if $C ϕ, then F |ù ϕ

It is important to also remember that we are dealing with a refutational

calculus. This means that if the formula we are dealing with is valid,

then the tableau for its negation is closed. The first lemma says that

there cannot be a model for a formula if its tableau is closed:

Proposition 2.5.2 A closed tableau is not satisfiable.

Proof (by contradiction). Let T be a closed tableau and assume it is

satisfiable. Because T is satisfiable, then by definition there is a branch in T

that is satisfiable. Let B be such a branch of T . Now, because T is closed, by

definition all branches have contradictions (a formula and its negation) at some

prefix. Let σ : ϕ and σ : ϕ be such prefixed formulae in B. From the definition

of satisfiability for prefixed formulae, we have that there is a structure M such

that M, fpσq |ù ϕ and M, fpσq |ù ϕ. By classical reasoning, M, fpσq |ù false,

which is impossible. Therefore, T cannot be satisfiable.

Soundness - Continued

C. Nalon München, 24/10/2023

The next lemma shows that any extension of a satisfiable tableau is

satisfiable.

Proposition 2.5.3 Let T be a tableau and T 1 be the tableau obtained

from T by an application of any of the inference rules. If T is satisfiable,

then T 1 is also satisfiable.

Proof: Let T be a satisfiable tableau and B one of its satisfiable branches (by

definition there is one). The proof is by cases:

‚ 1

p q |ù
1 p q 1 1 |ù

1 1
1p q 1 1p q 1p q

1p q |ù 1

Soundness - Continued

C. Nalon München, 24/10/2023

The next lemma shows that any extension of a satisfiable tableau is

satisfiable.

Proposition 2.5.3 Let T be a tableau and T 1 be the tableau obtained

from T by an application of any of the inference rules. If T is satisfiable,

then T 1 is also satisfiable.

Proof: Let T be a satisfiable tableau and B one of its satisfiable branches (by

definition there is one). The proof is by cases:

‚ Assume T 1 was obtained from T by an application of the δ rule to a formula

in B.

p q |ù
1 p q 1 1 |ù

1 1
1p q 1 1p q 1p q

1p q |ù 1

Soundness - Continued

C. Nalon München, 24/10/2023

The next lemma shows that any extension of a satisfiable tableau is

satisfiable.

Proposition 2.5.3 Let T be a tableau and T 1 be the tableau obtained

from T by an application of any of the inference rules. If T is satisfiable,

then T 1 is also satisfiable.

Proof: Let T be a satisfiable tableau and B one of its satisfiable branches (by

definition there is one). The proof is by cases:

‚ Assume T 1 was obtained from T by an application of the δ rule to a formula

in B. That is, the rule was applied to σ : ♦ϕ in B of T .

p q |ù
1 p q 1 1 |ù

1 1
1p q 1 1p q 1p q

1p q |ù 1

Soundness - Continued

C. Nalon München, 24/10/2023

The next lemma shows that any extension of a satisfiable tableau is

satisfiable.

Proposition 2.5.3 Let T be a tableau and T 1 be the tableau obtained

from T by an application of any of the inference rules. If T is satisfiable,

then T 1 is also satisfiable.

Proof: Let T be a satisfiable tableau and B one of its satisfiable branches (by

definition there is one). The proof is by cases:

‚ Assume T 1 was obtained from T by an application of the δ rule to a formula

in B. That is, the rule was applied to σ : ♦ϕ in B of T . By the definition of

satisfiability, there is a model M such that M, fpσq |ù ♦ϕ.

1 p q 1 1 |ù
1 1

1p q 1 1p q 1p q
1p q |ù 1

Soundness - Continued

C. Nalon München, 24/10/2023

The next lemma shows that any extension of a satisfiable tableau is

satisfiable.

Proposition 2.5.3 Let T be a tableau and T 1 be the tableau obtained

from T by an application of any of the inference rules. If T is satisfiable,

then T 1 is also satisfiable.

Proof: Let T be a satisfiable tableau and B one of its satisfiable branches (by

definition there is one). The proof is by cases:

‚ Assume T 1 was obtained from T by an application of the δ rule to a formula

in B. That is, the rule was applied to σ : ♦ϕ in B of T . By the definition of

satisfiability, there is a model M such that M, fpσq |ù ♦ϕ. This implies

that there is a world w1 in M such that fpσqRw1 and that M, w1 |ù ϕ.

1 1
1p q 1 1p q 1p q

1p q |ù 1

Soundness - Continued

C. Nalon München, 24/10/2023

The next lemma shows that any extension of a satisfiable tableau is

satisfiable.

Proposition 2.5.3 Let T be a tableau and T 1 be the tableau obtained

from T by an application of any of the inference rules. If T is satisfiable,

then T 1 is also satisfiable.

Proof: Let T be a satisfiable tableau and B one of its satisfiable branches (by

definition there is one). The proof is by cases:

‚ Assume T 1 was obtained from T by an application of the δ rule to a formula

in B. That is, the rule was applied to σ : ♦ϕ in B of T . By the definition of

satisfiability, there is a model M such that M, fpσq |ù ♦ϕ. This implies

that there is a world w1 in M such that fpσqRw1 and that M, w1 |ù ϕ. Note

that before we apply the δ rule, the prefix σ.i is not in B.

1 1
1p q 1 1p q 1p q

1p q |ù 1

Soundness - Continued

C. Nalon München, 24/10/2023

The next lemma shows that any extension of a satisfiable tableau is

satisfiable.

Proposition 2.5.3 Let T be a tableau and T 1 be the tableau obtained

from T by an application of any of the inference rules. If T is satisfiable,

then T 1 is also satisfiable.

Proof: Let T be a satisfiable tableau and B one of its satisfiable branches (by

definition there is one). The proof is by cases:

‚ Assume T 1 was obtained from T by an application of the δ rule to a formula

in B. That is, the rule was applied to σ : ♦ϕ in B of T . By the definition of

satisfiability, there is a model M such that M, fpσq |ù ♦ϕ. This implies

that there is a world w1 in M such that fpσqRw1 and that M, w1 |ù ϕ. Note

that before we apply the δ rule, the prefix σ.i is not in B. Now, we extend f

to f 1 as follows: f 1 is exactly the same as f for all prefixes in B.

1p q 1 1p q 1p q
1p q |ù 1

Soundness - Continued

C. Nalon München, 24/10/2023

The next lemma shows that any extension of a satisfiable tableau is

satisfiable.

Proposition 2.5.3 Let T be a tableau and T 1 be the tableau obtained

from T by an application of any of the inference rules. If T is satisfiable,

then T 1 is also satisfiable.

Proof: Let T be a satisfiable tableau and B one of its satisfiable branches (by

definition there is one). The proof is by cases:

‚ Assume T 1 was obtained from T by an application of the δ rule to a formula

in B. That is, the rule was applied to σ : ♦ϕ in B of T . By the definition of

satisfiability, there is a model M such that M, fpσq |ù ♦ϕ. This implies

that there is a world w1 in M such that fpσqRw1 and that M, w1 |ù ϕ. Note

that before we apply the δ rule, the prefix σ.i is not in B. Now, we extend f

to f 1 as follows: f 1 is exactly the same as f for all prefixes in B. We then

add that f 1pσ.iq is w1.

1p q 1p q
1p q |ù 1

Soundness - Continued

C. Nalon München, 24/10/2023

The next lemma shows that any extension of a satisfiable tableau is

satisfiable.

Proposition 2.5.3 Let T be a tableau and T 1 be the tableau obtained

from T by an application of any of the inference rules. If T is satisfiable,

then T 1 is also satisfiable.

Proof: Let T be a satisfiable tableau and B one of its satisfiable branches (by

definition there is one). The proof is by cases:

‚ Assume T 1 was obtained from T by an application of the δ rule to a formula

in B. That is, the rule was applied to σ : ♦ϕ in B of T . By the definition of

satisfiability, there is a model M such that M, fpσq |ù ♦ϕ. This implies

that there is a world w1 in M such that fpσqRw1 and that M, w1 |ù ϕ. Note

that before we apply the δ rule, the prefix σ.i is not in B. Now, we extend f

to f 1 as follows: f 1 is exactly the same as f for all prefixes in B. We then

add that f 1pσ.iq is w1. From the above, we have both that f 1pσqRf 1pσ.iq and

M, f 1pσ.iq |ù ϕ.

1

Soundness - Continued

C. Nalon München, 24/10/2023

The next lemma shows that any extension of a satisfiable tableau is

satisfiable.

Proposition 2.5.3 Let T be a tableau and T 1 be the tableau obtained

from T by an application of any of the inference rules. If T is satisfiable,

then T 1 is also satisfiable.

Proof: Let T be a satisfiable tableau and B one of its satisfiable branches (by

definition there is one). The proof is by cases:

‚ Assume T 1 was obtained from T by an application of the δ rule to a formula

in B. That is, the rule was applied to σ : ♦ϕ in B of T . By the definition of

satisfiability, there is a model M such that M, fpσq |ù ♦ϕ. This implies

that there is a world w1 in M such that fpσqRw1 and that M, w1 |ù ϕ. Note

that before we apply the δ rule, the prefix σ.i is not in B. Now, we extend f

to f 1 as follows: f 1 is exactly the same as f for all prefixes in B. We then

add that f 1pσ.iq is w1. From the above, we have both that f 1pσqRf 1pσ.iq and

M, f 1pσ.iq |ù ϕ. That is, M satisfies the conclusions of the δ rule (using f 1
instead of f).

Soundness - Theorem

C. Nalon München, 24/10/2023

Theorem 2.5.4 Let ϕ P WFF and T a closed tableau for ϕ. Then, ϕ is

valid.

|ù
t u p q “

t u

Soundness - Theorem

C. Nalon München, 24/10/2023

Theorem 2.5.4 Let ϕ P WFF and T a closed tableau for ϕ. Then, ϕ is

valid.

Just remember now that the closed tableau for ϕ starts with 1 : ϕ.

|ù
t u p q “

t u

Soundness - Theorem

C. Nalon München, 24/10/2023

Theorem 2.5.4 Let ϕ P WFF and T a closed tableau for ϕ. Then, ϕ is

valid.

Just remember now that the closed tableau for ϕ starts with 1 : ϕ.

Proof: (By contradiction). Assume that ϕ is not valid. Then, by definition, there

is a model M and a world w in M such that w does not satisfy ϕ. By the

semantics of negation, M, w |ù ϕ, for w in M. This means that the set

t1 : ϕu is satisfiable. Take M as a model and let fp1q “ w. By Proposition

2.5.3, all tableaux we might get for t1 : ϕu are satisfiable. But, from

Proposition 2.5.2, because T is closed, we know that this cannot happen. It

follows that ϕ is valid.

Completeness

C. Nalon München, 24/10/2023

Definition 2.5.5 A tableau is saturated if no further rules can be

applied.

Proposition (Page 61) All tableaux constructions are terminating.

Sketch: If the construction is systematic, this is easy to prove. We have

already defined a systematic construction: use α and β rules first; then apply

δ; and finally apply γ. Note that all steps consist of adding subformulae to the

tableau and the number of subformulae of a formula is finite.

Completeness - Continued

C. Nalon München, 24/10/2023

Theorem 2.5.7 Let ϕ P WFF. If ϕ is valid, then there is a closed

tableau for ϕ.

Proof: We take the contrapositive: If ϕ has an open tableau, then ϕ is not

valid.

‚ “ t | P u
‚
‚ P p q “

p q “

Completeness - Continued

C. Nalon München, 24/10/2023

Theorem 2.5.7 Let ϕ P WFF. If ϕ is valid, then there is a closed

tableau for ϕ.

Proof: We take the contrapositive: If ϕ has an open tableau, then ϕ is not

valid. Assume that ϕ has an open (saturated) tableau T . We show how to

construct a model from this tableau. Take a branch B which is open in T . Let

M be as follows:

‚ W “ tσ | σ : ϕ P Bu.
‚ if σ and σ.i occur in B, then set σRσ.i

‚ If σ : p, for p P P, occur in B, then set πpσ, pq “ true; otherwise

πpσ, pq “ false.

This construction is correct, that is, the built model is indeed a model for B.

Example: lpp_ qq Ñ plp_lqq

C. Nalon München, 24/10/2023

Negate: plpp_ qq Ñ plp_lqqq. NNF: lpp_ qq ^ p♦ p^♦ qq
1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

1: ♦ p(4) rα, 3s
1: ♦ q(5) rα, 3s
1.1: p(6) rδ, 4s

1.1: p_ q(7) rγ, 2s

1.1: p(8) rβ, 7s 1.1: q(9) rβ, 7s
X

 r s
_ r s

r s r s

“ t u

“ tp q p qu

p q “ p q “
p q “ p q “

p q “
p q “

|ù lp _ q ­|ù l _l

Example: lpp_ qq Ñ plp_lqq

C. Nalon München, 24/10/2023

Negate: plpp_ qq Ñ plp_lqqq. NNF: lpp_ qq ^ p♦ p^♦ qq
1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

1: ♦ p(4) rα, 3s
1: ♦ q(5) rα, 3s
1.1: p(6) rδ, 4s

1.1: p_ q(7) rγ, 2s

1.1: p(8) rβ, 7s 1.1: q(9) rβ, 7s
X 1.2: q(10) rδ, 5s

1.2: p_ q(11) rγ, 2s

1.2: p(12) rβ, 11s 1.2: q(13) rβ, 11s
X

“ t u

“ tp q p qu

p q “ p q “
p q “ p q “

p q “
p q “

|ù lp _ q ­|ù l _l

Example: lpp_ qq Ñ plp_lqq

C. Nalon München, 24/10/2023

Negate: plpp_ qq Ñ plp_lqqq. NNF: lpp_ qq ^ p♦ p^♦ qq
1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

1: ♦ p(4) rα, 3s
1: ♦ q(5) rα, 3s
1.1: p(6) rδ, 4s

1.1: p_ q(7) rγ, 2s

1.1: p(8) rβ, 7s 1.1: q(9) rβ, 7s
X 1.2: q(10) rδ, 5s

1.2: p_ q(11) rγ, 2s

1.2: p(12) rβ, 11s 1.2: q(13) rβ, 11s
X

W “ t1, 1.1, 1.2u

“ tp q p qu

p q “ p q “
p q “ p q “

p q “
p q “

|ù lp _ q ­|ù l _l

Example: lpp_ qq Ñ plp_lqq

C. Nalon München, 24/10/2023

Negate: plpp_ qq Ñ plp_lqqq. NNF: lpp_ qq ^ p♦ p^♦ qq
1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

1: ♦ p(4) rα, 3s
1: ♦ q(5) rα, 3s
1.1: p(6) rδ, 4s

1.1: p_ q(7) rγ, 2s

1.1: p(8) rβ, 7s 1.1: q(9) rβ, 7s
X 1.2: q(10) rδ, 5s

1.2: p_ q(11) rγ, 2s

1.2: p(12) rβ, 11s 1.2: q(13) rβ, 11s
X

W “ t1, 1.1, 1.2u
R “ tp1, 1.1q, p1, 1.2qu

p q “ p q “
p q “ p q “

p q “
p q “

|ù lp _ q ­|ù l _l

Example: lpp_ qq Ñ plp_lqq

C. Nalon München, 24/10/2023

Negate: plpp_ qq Ñ plp_lqqq. NNF: lpp_ qq ^ p♦ p^♦ qq
1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

1: ♦ p(4) rα, 3s
1: ♦ q(5) rα, 3s
1.1: p(6) rδ, 4s

1.1: p_ q(7) rγ, 2s

1.1: p(8) rβ, 7s 1.1: q(9) rβ, 7s
X 1.2: q(10) rδ, 5s

1.2: p_ q(11) rγ, 2s

1.2: p(12) rβ, 11s 1.2: q(13) rβ, 11s
X

W “ t1, 1.1, 1.2u
R “ tp1, 1.1q, p1, 1.2qu
πp1, pq “ πp1, qq “ false

πp1.1, pq “ πp1.2, qq “ false

πp1.1, qq “ true

πp1.2, pq “ true

|ù lp _ q ­|ù l _l

Example: lpp_ qq Ñ plp_lqq

C. Nalon München, 24/10/2023

Negate: plpp_ qq Ñ plp_lqqq. NNF: lpp_ qq ^ p♦ p^♦ qq
1: lpp_ qq ^ p♦ p^♦ qq(1) [neg. assumption]

1: lpp_ qq(2) rα, 1s
1: ♦ p^♦ q(3) rα, 1s

1: ♦ p(4) rα, 3s
1: ♦ q(5) rα, 3s
1.1: p(6) rδ, 4s

1.1: p_ q(7) rγ, 2s

1.1: p(8) rβ, 7s 1.1: q(9) rβ, 7s
X 1.2: q(10) rδ, 5s

1.2: p_ q(11) rγ, 2s

1.2: p(12) rβ, 11s 1.2: q(13) rβ, 11s
X

W “ t1, 1.1, 1.2u
R “ tp1, 1.1q, p1, 1.2qu
πp1, pq “ πp1, qq “ false

πp1.1, pq “ πp1.2, qq “ false

πp1.1, qq “ true

πp1.2, pq “ true

M, 1 |ù lpp_ qq,M, 1 ­|ù lp_lq

This is just one part of the story...

C. Nalon München, 24/10/2023

... better: this is just part one of the story...

“

lp Ñ q Ñ pl Ñ l q

$ $ Ñ $
$ $ l

This is just one part of the story...

C. Nalon München, 24/10/2023

... better: this is just part one of the story... ... that is, the part of the

story where n “ 1.

lp Ñ q Ñ pl Ñ l q

$ $ Ñ $
$ $ l

This is just one part of the story...

C. Nalon München, 24/10/2023

... better: this is just part one of the story... ... that is, the part of the

story where n “ 1.

What do you need to extend the calculi for multimodal logics?

lp Ñ q Ñ pl Ñ l q

$ $ Ñ $
$ $ l

This is just one part of the story...

C. Nalon München, 24/10/2023

... better: this is just part one of the story... ... that is, the part of the

story where n “ 1.

What do you need to extend the calculi for multimodal logics?

We start with the easy part: the axiomatic system.

lp Ñ q Ñ pl Ñ l q

$ $ Ñ $
$ $ l

This is just one part of the story...

C. Nalon München, 24/10/2023

... better: this is just part one of the story... ... that is, the part of the

story where n “ 1.

What do you need to extend the calculi for multimodal logics?

We start with the easy part: the axiomatic system.

Taut enough propositional tautologies.

K la pϕÑ ψq Ñ pla ϕÑ la ψq.
and

SUB Uniform substitution; and

MP If $ ϕ and $ ϕÑ ψ, then $ ψ.

Nec If $ ϕ, then $ la ϕ

This is just one part of the story...

C. Nalon München, 24/10/2023

... better: this is just part one of the story... ... that is, the part of the

story where n “ 1.

What do you need to extend the calculi for multimodal logics?

We start with the easy part: the axiomatic system.

Taut enough propositional tautologies.

K la pϕÑ ψq Ñ pla ϕÑ la ψq.
and

SUB Uniform substitution; and

MP If $ ϕ and $ ϕÑ ψ, then $ ψ.

Nec If $ ϕ, then $ la ϕ

Tableaux for multimodal logics

C. Nalon München, 24/10/2023

α β γ δ

σ : ϕ^ ψ
σ : ϕ

σ : ψ

σ : ϕ_ ψ
σ : ϕ | σ : ψ

σ : lϕ
σ.i : ϕ

for all existing σ.i

σ : ♦ϕ

σ.i : ϕ

for a fresh σ.i

Tableaux for multimodal logics

C. Nalon München, 24/10/2023

α β γ δ

σ : ϕ^ ψ
σ : ϕ

σ : ψ

σ : ϕ_ ψ
σ : ϕ | σ : ψ

σ : la ϕ
σ.rasi : ϕ

for all existing σ.rasi

σ : ♦a ϕ
σ.rasi : ϕ

for a fresh σ.rasi

Example

C. Nalon München, 24/10/2023

♦1 p♦2 p_♦2 qq ^ pl1 l2 p_l1 l2 qq

To be continued.

Some Other Usual Modal Logics

C. Nalon München, 24/10/2023

Different restrictions

on the accessibility

relations Ra define

different modal

logics:

‚ No restrictions:

Kn;

‚ Reflexive: KTn;

‚ Transitive: K4n;

‚ Euclidean: K5n;

‚ Serial: KDn;

‚ Symmetric: KBn;

‚ Reflexive and

Transitive: S4n;

‚ Reflexive and

Euclidean: S5n;

‚ . . .

References

C. Nalon München, 24/10/2023

[Fitting and Mendelsohn, 1998] Fitting, M. and Mendelsohn, R. L.

(1998). First-Order Modal Logic. Synthese Library, 277, Kluwer

Academic Publishers.

[Halpern and Moses, 1992] Halpern, J. Y. and Moses, Y. (1992). A

guide to completeness and complexity for modal logics of knowledge

and belief. Artificial Intelligence, 54(3):319–379.

[Ladner, 1977] Ladner, R. E. (1977). The computational complexity of

provability in systems of modal propositional logic. SIAM J. Comput.,

6(3):467–480.

[Mints, 1990] Mints, G. (1990). Gentzen-type systems and resolution

rules, part I: Propositional logic. Lecture Notes in Computer Science,

417:198–231.

[Spaan, 1993] Spaan, E. (1993). Complexity of Modal Logics. PhD

thesis, University of Amsterdam.

	The Basics
	The last session

	Calculi for Modal Logics
	Notation and Properties
	Properties of Calculi
	Axiomatisation
	Example: [12pt][c](p q) [12pt][c]p
	Tableaux
	Example - NNF
	The Rules
	Back to the Example
	Example - II
	Example - III
	Soundness
	Satisfaction of Prefixed Formulae
	Soundness again
	Soundness - Continued
	Soundness - Theorem
	Completeness
	Completeness - Continued
	Example: [12pt][c](p q) ([12pt][c] p [12pt][c] q)
	This is just one part of the story...
	Tableaux for multimodal logics
	Example

	To be continued.
	Some Other Usual Modal Logics
	References

