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The Basics



Motivation

C. Nalon München, 17/10/2023

• Modal logics have been used in Computer Science to represent

properties of complex systems: temporal, epistemic, obligations,

choice, actions, and so on.

• Applications include, but are not restricted to: programming

languages, knowledge representation and reasoning, verification of

distributed systems and terminological reasoning.



Syntax and Semantics

C. Nalon München, 17/10/2023

• Modal logics are extensions of propositional logic with operators ‘�’

and ‘♦’.

• Evaluation of a formula depends on a set of worlds and on the

accessibility relations on this set.

• Different restrictions on the accessibility relations give rise to

different modal logics.

p, q ¬p, q
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• Modal logics are extensions of propositional logic with operators ‘�’

and ‘♦’.

• Evaluation of a formula depends on a set of worlds and on the

accessibility relations on this set.

• Different restrictions on the accessibility relations give rise to

different modal logics.
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Syntax and Semantics

C. Nalon München, 17/10/2023

• Modal logics are extensions of propositional logic with operators ‘�a ’

and ‘♦a ’, where a ∈ A = {1, . . . , n}, n ∈ N.

• Evaluation of a formula depends on a set of worlds and on the

accessibility relations on this set.

• Different restrictions on the accessibility relations give rise to

different modal logics.

p, qw1 ¬p, q w2

q

w0

(M, w0) |= ♦1 p ∧ ♦1¬p

1 1

(M, w0) |= �1 (�2 p ∨�2¬p)

2 2
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• If p is an author, then p wrote a paper:

[author]p →< paper > p
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Relations
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• If p is an author, then p wrote a paper:

[author]p →< paper > p

• Every one that has a child has a descendant:

< has_child > ⊤ →< has_descendant > ⊤

• Having an ancestor is a transitive relation:

< has_ancestor > ⊤ →< has_ancestor >< has_ancestor > ⊤



Das Wetter

C. Nalon München, 17/10/2023

sonnig neblig regnerisch regnerisch sonnig
• • • • •



Computational Systems

C. Nalon München, 17/10/2023

init init init ready ready
• • • • •



More on Computational Systems
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• • • • •
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request acknowledge
• • • • •

busy busy ready busy ready
• • • • •

¬x ¬x x ∧ dl dl dl
• • • • •



Mutual Exclusion

C. Nalon München, 17/10/2023

n1 n2

t1 n2 n1 t2

c1 n2 t1 t2 n1 c2

c1 t2 t1 c2



Syntax

C. Nalon München, 17/10/2023

• The set of well-formed formulae, WFF:

• p ∈ P;

• if ϕ ∈ WFF, then so are ¬ϕ and �a ϕ, a ∈ A = {1, . . . , n};

• if ϕ and ψ ∈ WFF, then (ϕ ∧ ψ) ∈ WFF.

• Abbreviations:

• false ≡ p ∧ ¬p (for p ∈ P)

• true ≡ ¬false

• ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)
• ϕ→ ψ ≡ ¬ϕ ∨ ψ
• ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)
• ♦a ϕ ≡ ¬�a ¬ϕ.



Semantics

C. Nalon München, 17/10/2023

• A Kripke Structure M for P and A = {1, . . . , n} is a tuple

M = 〈W ,R1, . . . ,Rn, π〉,

where:

• W is a non-empty set;

• For each a ∈ A, Ra ⊆ W ×W;

• π : W ×P −→ {T ,F}.

• The satisfiability relation |= between a world w ∈ W in a Kripke

structure M and a formula is inductively defined by:

• (M, w) |= p, p ∈ P, iff π(w, p) = T ;

• (M, w) |= ¬ϕ iff (M, w) 6|= ϕ;

• (M, w) |= ϕ ∧ ψ iff (M, w) |= ϕ and (M, w) |= ψ;

• (M, w) |=�a ϕ iff for all w′, wRaw
′ implies (M, w′) |= ϕ;

• (M, w) |=♦a ϕ iff exists w′, wRaw
′ and (M, w′) |= ϕ.



Reasoning Tasks

C. Nalon München, 17/10/2023

M = 〈W ,R1, . . . ,Rn, π〉

• A formula ϕ is locally satisfiable iff there is a model M and w ∈ W
such that 〈M, w〉 |= ϕ. In this case, we say that M satisfies ϕ,

denoted by M |=L ϕ.

• A formula ϕ is globally satisfiable iff there is a model M and for all

w ∈ W we have that 〈M, w〉 |= ϕ. In this case, we say that M
globally satisfies ϕ, denoted by M |=G ϕ.

• A formula ϕ is satisfiable under the global constraints

Γ = {γ1, . . . , γm} iff there is a model M such that M |=G Γ and there

is w ∈ W such that 〈M, w〉 |=L ϕ.
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M = 〈W ,R1, . . . ,Rn, π〉

• A formula ϕ is locally satisfiable iff there is a model M and w ∈ W
such that 〈M, w〉 |= ϕ. In this case, we say that M satisfies ϕ,

denoted by M |=L ϕ.

PSPACE-complete [Ladner, 1977, Halpern and Moses, 1992]

• A formula ϕ is globally satisfiable iff there is a model M and for all

w ∈ W we have that 〈M, w〉 |= ϕ. In this case, we say that M
globally satisfies ϕ, denoted by M |=G ϕ.

EXPTIME-complete [Spaan, 1993]

• A formula ϕ is satisfiable under the global constraints

Γ = {γ1, . . . , γm} iff there is a model M such that M |=G Γ and there

is w ∈ W such that 〈M, w〉 |=L ϕ.

EXPTIME-complete [Spaan, 1993]



Local Reasoning

C. Nalon München, 17/10/2023

• Nice properties: finite, tree-like models with height bounded by the

modal depth/modal level of the formula.

♦♦p ∧�¬p

w0

¬p w1

p w2

♦♦p ∧�¬p1 0

♦♦p1.1 0

♦p1.1.1 1

p1.1.1.1 2

�¬p1.2 0

¬p1.2.1 1



Invariance Results



Invariance Results

C. Nalon München, 17/10/2023

What properties are preserved by relations and operations. Two models

are modally equivalent if they have the same theories, i.e. for M1 and

M2, and all formulae ϕ, we have that M1 ≡ M2 if, and only if,

M1 |= ϕ if, and only if, M2 |= ϕ.



Invariance Results
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What properties are preserved by relations and operations. Two models

are modally equivalent if they have the same theories, i.e. for M1 and

M2, and all formulae ϕ, we have that M1 ≡ M2 if, and only if,

M1 |= ϕ if, and only if, M2 |= ϕ.

• disjoint unions

• generated submodels

• bounded morphisms

• n-bissimilarity

These results imply that if a formula is satisfiable, then it is satisfiable in

a tree-like finite model.



Proofs in Pictures

C. Nalon München, 17/10/2023
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Modal Depth

C. Nalon München, 17/10/2023

Definition 2.28 Let ϕ, ψ, χ ∈ WFF be formulae. The modal depth (or

degree) of ϕ is the maximum nesting of modal operator occurring in ϕ.

Let deg : WFF −→ N be a function defined as follows:

• deg(ϕ) = 0, if ϕ ∈ P
• deg(⊥) = 0
• deg(¬ϕ) = deg(ϕ)
• deg(ϕ ∧ ψ) = max{deg(ϕ), deg(ψ)}
• deg(�ϕ) = 1 + deg(ϕ)



Example, with boxes
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�(p→ q) → (�p→�q)

The modal degree of this formula is one; thus, we only need to look at

trees of height 1 (note, heights start at 0).

♦(p ∧ ¬q) ∨♦¬p ∨�q

is satisfied at M:

p, q
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�(p→ q) → (�p→�q)

The modal degree of this formula is one; thus, we only need to look at

trees of height 1 (note, heights start at 0).

♦(p ∧ ¬q) ∨♦¬p ∨�q

is satisfied at M:

p, q
p, q

p, q



The next sessions



Calculi for Modal Logics

C. Nalon München, 17/10/2023

• Axiomatic systems

• Tableaux



Some Other Usual Modal Logics

C. Nalon München, 17/10/2023

Different restrictions

on the accessibility

relations Ra define

different modal

logics:

• No restrictions:

Kn;

• Reflexive: KTn;

• Transitive: K4n;

• Euclidean: K5n;

• Serial: KDn;

• Symmetric: KBn;

• Reflexive and

Transitive: S4n;

• Reflexive and

Euclidean: S5n;

• . . .



References

C. Nalon München, 17/10/2023

[Fitting and Mendelsohn, 1998] Fitting, M. and Mendelsohn, R. L.

(1998). First-Order Modal Logic. Synthese Library, 277, Kluwer

Academic Publishers.

[Halpern and Moses, 1992] Halpern, J. Y. and Moses, Y. (1992). A

guide to completeness and complexity for modal logics of knowledge

and belief. Artificial Intelligence, 54(3):319–379.

[Ladner, 1977] Ladner, R. E. (1977). The computational complexity of

provability in systems of modal propositional logic. SIAM J. Comput.,

6(3):467–480.

[Mints, 1990] Mints, G. (1990). Gentzen-type systems and resolution

rules, part I: Propositional logic. Lecture Notes in Computer Science,

417:198–231.

[Spaan, 1993] Spaan, E. (1993). Complexity of Modal Logics. PhD

thesis, University of Amsterdam.



Invariance in Detail



Disjoint Unions

C. Nalon München, 17/10/2023

Let Mi = 〈Wi,Ri, πi〉, i ∈ N, be Kripke structures. The disjoint union of

Mi is given by:

⊎

i

Mi = 〈
⋃

i

Wi,
⋃

i

Ri,
⋃

i

πi〉
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Let Mi = 〈Wi,Ri, πi〉, i ∈ N, be Kripke structures. The disjoint union of

Mi is given by:

⊎

i

Mi = 〈
⋃

i

Wi,
⋃

i

Ri,
⋃

i

πi〉

Proposition 2.3 Modal satisfaction is invariant under disjoint unions:

Mi |= ϕ if, and only if,
⊎

i

Mi |= ϕ.



Generated Submodels

C. Nalon München, 17/10/2023

Definition 2.5, submodel: Let M = 〈W ,R, π〉 and M′ = 〈W ′,R′, π′〉 be

Kripke structures. If

• W ′ ⊆ W ,

• R′ = R ∩ (W ′ ×W ′), and

• π′(w, p) = π(w, p),

for all w ∈ W ′ and p ∈ P, then M′ is a submodel of M.

Definition 2.5, generated submodel: Let M = 〈W ,R, π〉 be a Kripke

structure and M′ = 〈W ′,R′, π′〉 a submodel of M. We say that M′ is a

generated submodel of M, if: w ∈ W ′ and wRv, then v ∈ W ′.

Definition 2.5, generated submodel by a set: Let M = 〈W ,R, π〉 be a

Kripke structure. A submodel generated by W ′′ is the smallest generated

submodel M′ = 〈W ′,R′, π′〉 such that W ′′ ⊆ W ′.

Definition 2.5, rooted (or pointed) generated model: Let M = 〈W ,R, π〉

be a Kripke structure. A rooted generated model, with root w ∈ W , is a

submodel generated by {w}.



Generated Submodels: Invariance Results

C. Nalon München, 17/10/2023

Proposition 2.6 Modal satisfaction is invariant under generated

submodels, that is, if M′ is a generated submodel of M, then:

M |= ϕ if, and only if, M′ |= ϕ

for all ϕ ∈ WFF.



Homomorphism

C. Nalon München, 17/10/2023

Definition 2.7, homomorphism Let M = 〈W ,R, π〉 and

M′ = 〈W ′,R′, π′〉 be Kripke structures, and f : M −→ M′ be a

function. If:

• for all p ∈ P and w ∈ W, if π(w)(p) = true, then π′(f(w), p) = true;

and

• if wRw′, then f(w)R′f(w′);

then, f is homomorphism from M to M′.

Note that this is not enough show invariance.



Homomorphism
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Definition 2.8, strong homomorphism: Let M = 〈W ,R, π〉 and

M′ = 〈W ′,R′, π′〉 be Kripke structures, and f : M −→ M′ be a

function. If:

• for all p ∈ P and w ∈ W, π(w)(p) = true if, and only if,

π′(f(w), p) = true; and

• wRw′ if, and only if, f(w)R′f(w′);

then, f is strong homomorphism from M to M′.

Definition 2.8, embedding: Let M = 〈W ,R, π〉 and M′ = 〈W ′,R′, π′〉
be Kripke structures, and f : M −→ M′ be a strong homomorphism. If

f is injective, then f is an embedding.

Definition 2.8, isomorphism: Let M = 〈W ,R, π〉 and

M′ = 〈W ′,R′, π′〉 be Kripke structures, and f : M −→ M′ be a strong

homomorphism. If f is bijective, then f is an isomorphism.



Invariance Results

C. Nalon München, 17/10/2023

Proposition 2.9 Let M = 〈W ,R, π〉 and M′ = 〈W ′,R′, π′〉 be Kripke

structures, and f : M −→ M′ be a function. The following holds:

1. if f is a surjective strong homomorphism with f(w) = w′, then w

and w′ are modally equivalent.

2. if M and M′ are isomorphic, then they are modally equivalent.



Bounded Morphism

C. Nalon München, 17/10/2023

Definition 2.10, bounded morphism Let M = 〈W ,R, π〉 and

M′ = 〈W ′,R′, π′〉 be Kripke structures, and f : M −→ M′ a function. If:

1. w and f(w) satisfy the same propositional symbols; that is, for all

w ∈ W and p ∈ P:

π(w, p) = π′(f(w), p)

2. for all w,w′ ∈ W, if wRw′, then f(w)R′f(w′);
3. if f(w)R′w′, then there is w′′ ∈ W such that wRw′′ and f(w′′) = w′

(back condition);

then f is a bounded morphism from M to M′.

Definition 2.10, bounded morphic image Let M = 〈W ,R, π〉 and

M′ = 〈W ′,R′, π′〉 be Kripke structures, and f : M −→ M′ a bounded

morphism from M to M′. If f is surjective, then M′ is a bounded

morphic image of M.



Invariance Results

C. Nalon München, 17/10/2023

Proposition 2.14 Modal satisfaction is invariant under bounded

morphisms.

Let M = 〈W ,R, π〉 and M′ = 〈W ′,R′, π′〉 be Kripke structures, and

f : M −→ M′ a bounded morphism from M to M′. Then,

M |= ϕ if, and only if, M′ |= ϕ

for all ϕ ∈ WFF.



Tree Model Property

C. Nalon München, 17/10/2023

Let M = 〈W ,R, π〉 be a Kripke structure. M is tree-like if the graph

〈W ,R〉 is a tree (a directed acyclic graph).

Proposition 2.15 Let M = 〈W ,R, π〉 be a Kripke structure. Then,

there is M′ = 〈W ′,R′, π′〉 that is tree-like and a bounded morphic image

of M′.

From the previous results, we have that all modal formulae that are

satisfiable are satisfiable in a tree-like model.



Bissimulations

C. Nalon München, 17/10/2023

Definition 2.16, bissimulations Let M = 〈W ,R, π〉 and

M′ = 〈W ′,R′, π′〉 be Kripke structures, and Z ⊆ M×M′ a relation. If:

1. if wZw′, then for all w ∈ W and p ∈ P:

π(w, p) = π′(w′, p)

2. if wZw′ and wRw′′, then there is w′′′ ∈ W ′ such that w′′Zw′′′ and

w′R′w′′′ (forth condition);

3. if wZw′ and w′R′w′′′, then there is w′′ ∈ W such that w′′Zw′′′ and

wRw′′ (back condition);

then Z is a bissimulation between M, w and M′, w′.



Invariance Results

C. Nalon München, 17/10/2023

Proposition 2.19 Let M, M′, and Mi (i ∈ N) be Kripke structures.

The following holds:

1. if M and M′ are modally equivalent, then they are bissimilar.

2. for all i, w ∈ Mi, Mi, w is bissimilar to
⊎

i
Mi, w.

3. if M′ is a generated submodel of M, then M′, w is bissimilar to

M, w, for all w ∈ M′.

4. if M′ is a bounded morphic image of M, then M′, w is bissimilar to

M, w, for all w ∈ M′.

Theorem 2.20 Let M and M′ be Kripke structures. Then, for all

w ∈ W and w′ ∈ W ′,

if w and w′ are bissimilar, then they are modally equivalent.

Note: the converse is not true in general; however, if the relations are

finite, then the bissimilarity and modal equivalence coincide (Theorem

2.24, Hennessy-Milner Theorem).



Finite Models

C. Nalon München, 17/10/2023

Definition 2.7 Let M be a class of Kripke structures and L a logical

language. If, for all formulae ϕ ∈ WFFL:

if ϕ is satisfiable, then there is M ∈ M, M finite, such that M |= ϕ,

then L has the finite model property with respect to M.



Modal Depth

C. Nalon München, 17/10/2023

Definition 2.28 Let ϕ, ψ, χ ∈ WFF be formulae. The modal depth (or

degree) of ϕ is the maximum nesting of modal operator occurring in ϕ.

Let deg : WFF −→ N be a function defined as follows:

• deg(ϕ) = 0, if ϕ ∈ P
• deg(⊥) = 0
• deg(¬ϕ) = deg(ϕ)
• deg(ϕ ∧ ψ) = max{deg(ϕ), deg(ψ)}
• deg(�ϕ) = 1 + deg(ϕ)

Proposition 2.29 Assume P is finite.

1. For all n ∈ N, there are only finitely many formulae of degree at

most n (up to logical equivalence);

2. For all n ∈ N, Kripke structures M = 〈W ,R, π〉, and w ∈ W,

{ϕ | M, w |= ϕ, deg(ϕ) ≤ n} is finite (up to logical equivalence).



n-bissimilarity

C. Nalon München, 17/10/2023

Definition 2.30 Let M = 〈W ,R, π〉 and M′ = 〈W ′,R′, π′〉 be Kripke

structures with w ∈ W and w′ ∈ W ′. Let Zi ⊆ W ×W ′, i ≤ n, n ∈ N, be

relations such that Zi ⊆ Zi−1. If:

1. wZnw
′

2. for all w ∈ W, if wZ0w
′, then for all p ∈ P:

π(w, p) = π′(w′, p)

3. for all w,w′ ∈ W, if wZi+1w
′ and wRw′′, then there exists w′′′ with

w′R′w′′′ and w′′Ziw
′′′;

4. for all w,w′ ∈ W, if wZi+1w
′ and w′R′w′′′, then there exists w′′ with

wRw′′ and w′′Ziw
′′′;

then M, w and M′, w′ are n-bissimilar.



Invariance Results

C. Nalon München, 17/10/2023

Proposition 2.31 n-bissimilarity for all n and modal equivalence

coincide.

M, w and M′, w′ are n-bissimilar

if, and only if,

for all ϕ, deg(ϕ) ≤ n and M, w |= ϕ if, and only if, M′, w′ |= ϕ.



Finite Model Property via Selection

C. Nalon München, 17/10/2023

Definition 2.32,height of a tree-like model It is defined as the height

of trees.

Definition 2.32, restriction to a particular height k: Just take W ′ to

be the set of worlds that occurr up to the height k.

Lemma 2.33 Worlds w in the model whose height is restricted by k are

l-bissimilar to those in the original model, where l = k − height(w).

Note: l-bissimilarity says that we are considering the formulae with

degree at most l, that is, at the height k − height(w) we are considering

modal formulae with degree at most k − height(w). Taking k to be the

degree of a formula ϕ, this says that the subformulae of ϕ are satisfied

at the height they occur in the tree.



Continued

C. Nalon München, 17/10/2023

We take a formula that is satisfiable and show that it is satisfiable in a

model that is restricted by some height k.

1. Take the tree-like model with root w that satisfies the formula

(Proposition 2.6, the unravelling construction, bounded morphism).

2. Take the model restricted by k, the degree of the formula (Lemma

2.33).

3. The construction basically divides the tree in layers (corresponding

to the sets of worlds that are at some height)

(a) S0 = {w}
(b) Si+1 = {w′ | w ∈ Si, w |=♦ψ, deg(♦ψ) = i, w′ |= ψ, }

By Propositon 2.29, there are only finitely many formulae of the form

♦ψ (up to equivalence) whose degree is i.



Filtrations

C. Nalon München, 17/10/2023

1. It works on the closed set of subformulae Σ.

2. Defines equivalence classes for worlds based on the formulae in Σ.

3. Construct the model using those equivalence classes and making

sure that diamonds are satisfied.



Filtrations

C. Nalon München, 17/10/2023

1. It works on the closed set of subformulae Σ.

2. Defines equivalence classes for worlds based on the formulae in Σ.

3. Construct the model using those equivalence classes and making

sure that diamonds are satisfied.

Example:

M = 〈N, {(0, 1), (0, 2), (1, 3)} ∪ {(n, n+ 1) | n ≥ 2}, π〉

where π(w, p) = true iff w 6= 0 and π(w, q) = true iff w = 2.

Take Σ = {p,♦p}. There are only two equivalence classes based on Σ
for this particular model: those that satisfy {p} and those that don’t.

M′ = 〈{|0|, |1|}, {(|0|, |1|), (|1|, |1|)}, π′〉

where π(w, p) = true iff w = |1|.



Invariance Results

C. Nalon München, 17/10/2023

Proposition 2.38 The construction of the filtration is finite: it has the

size of the powerset of Σ.

Theorem 2.39 Satisfiability of modal formula is preserved under

filtration.

Smallest and largest filtrations can be obtained by restricting the

construction of the relation in the filtered model (Lemma 2.40):

1. |w|Rs|w′| iff exists w′′ ∈ |w|, w′′′ ∈ |w′| and w′′Rw′′′.

2. |w|Rl|w′| iff for all ♦ϕ in Σ, if M, w′ |= ψ, then M, w |=♦ϕ.

Theorem 2.41 If a formula is satisfiable, it is satisfiable in a finite

model.

Proof: using a filtration, the size of the model is at most exponential in

the number of subformulae.
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