# Modal Logic: Overview

### Cláudia Nalon

Department of Computer Science University of Brasília

LMU, The Modal Logic Sessions

## The Basics

### Motivation

- Modal logics have been used in Computer Science to represent properties of complex systems: temporal, epistemic, obligations, choice, actions, and so on.
- Applications include, but are not restricted to: programming languages, knowledge representation and reasoning, verification of distributed systems and terminological reasoning.

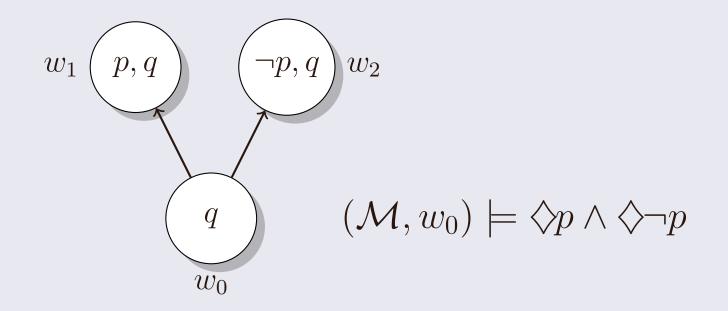
- Modal logics are extensions of propositional logic with operators '□' and '◊'.
- Evaluation of a formula depends on a set of worlds and on the accessibility relations on this set.
- Different restrictions on the accessibility relations give rise to different modal logics.

$$(p,q)$$
  $(\neg p,q)$ 

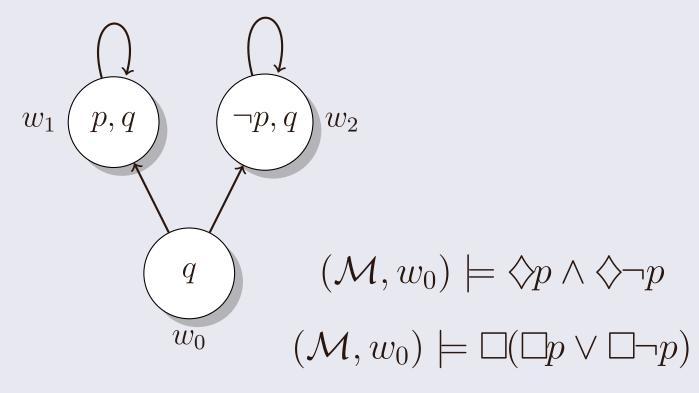
- Modal logics are extensions of propositional logic with operators '□' and '◊'.
- Evaluation of a formula depends on a set of worlds and on the accessibility relations on this set.
- Different restrictions on the accessibility relations give rise to different modal logics.

$$w_1(p,q)$$
  $(\neg p,q)w_2$ 

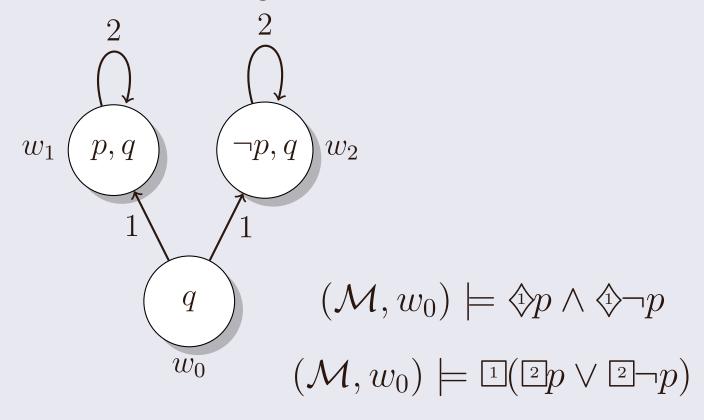
- Modal logics are extensions of propositional logic with operators '□' and '◊'.
- Evaluation of a formula depends on a set of worlds and on the accessibility relations on this set.
- Different restrictions on the accessibility relations give rise to different modal logics.



- Modal logics are extensions of propositional logic with operators '□' and '◊'.
- Evaluation of a formula depends on a set of worlds and on the accessibility relations on this set.
- Different restrictions on the accessibility relations give rise to different modal logics.



- Modal logics are extensions of propositional logic with operators 'a' and '◊', where a ∈ A = {1,...,n}, n ∈ N.
- Evaluation of a formula depends on a set of worlds and on the accessibility relations on this set.
- Different restrictions on the accessibility relations give rise to different modal logics.



### **Relations**

• If *p* is an author, then *p* wrote a paper:

 $[author]p \rightarrow < paper > p$ 

### **Relations**

• If *p* is an author, then *p* wrote a paper:

 $[author]p \rightarrow < paper > p$ 

• Every one that has a child has a descendant:

 $< has\_child > \top \rightarrow < has\_descendant > \top$ 

### **Relations**

• If *p* is an author, then *p* wrote a paper:

 $[author]p \rightarrow < paper > p$ 

• Every one that has a child has a descendant:

 $< has\_child > \top \rightarrow < has\_descendant > \top$ 

• Having an ancestor is a transitive relation:

 $< has\_ancestor > \top \rightarrow < has\_ancestor > < has\_ancestor > \top$ 



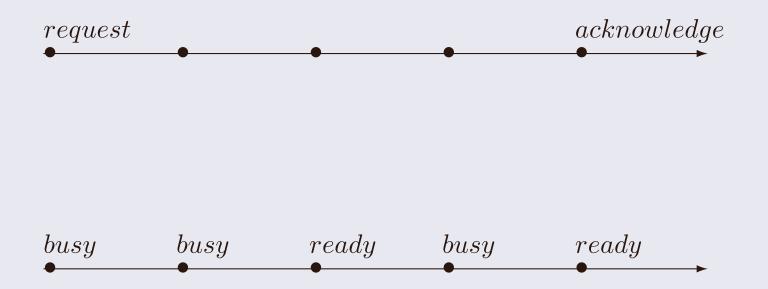
### **Computational Systems**



### More on Computational Systems



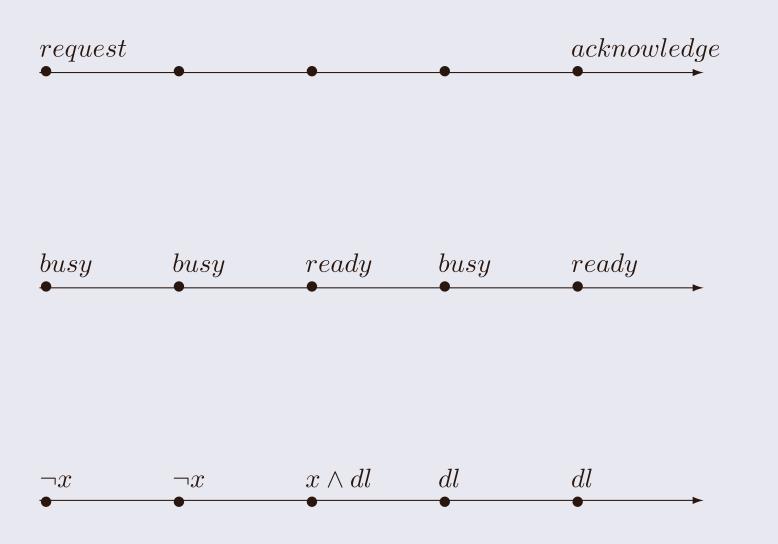
### More on Computational Systems



C. Nalon

#### München, 17/10/2023

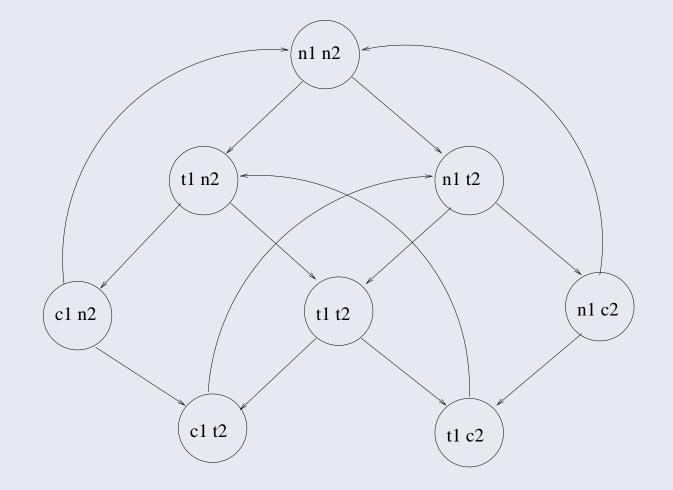
### More on Computational Systems



C. Nalon

München, 17/10/2023

### **Mutual Exclusion**



C. Nalon

### Syntax

- The set of well-formed formulae, WFF:
  - $p \in \mathcal{P}$ ;
  - if  $\varphi \in WFF$ , then so are  $\neg \varphi$  and  $\Box \varphi$ ,  $a \in \mathcal{A} = \{1, \dots, n\}$ ;
  - if  $\varphi$  and  $\psi \in WFF$ , then  $(\varphi \land \psi) \in WFF$ .
- Abbreviations:
  - false  $\equiv p \land \neg p$  (for  $p \in \mathcal{P}$ )
  - true  $\equiv \neg$  false
  - $\varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi)$
  - $\bullet \quad \varphi \to \psi \equiv \neg \varphi \lor \psi$
  - $\varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
  - $\langle a \rangle \varphi \equiv \neg a \neg \varphi.$

### **Semantics**

• A Kripke Structure  $\mathcal{M}$  for  $\mathcal{P}$  and  $\mathcal{A} = \{1, \ldots, n\}$  is a tuple

$$\mathcal{M} = \langle \mathcal{W}, \mathcal{R}_1, \ldots, \mathcal{R}_n, \pi \rangle,$$

where:

- $\mathcal{W}$  is a non-empty set;
- For each  $a \in \mathcal{A}$ ,  $\mathcal{R}_a \subseteq \mathcal{W} \times \mathcal{W}$ ;
- $\pi: \mathcal{W} \times \mathcal{P} \longrightarrow \{T, F\}.$
- The satisfiability relation  $\models$  between a world  $w \in W$  in a Kripke structure M and a formula is inductively defined by:

• 
$$(\mathcal{M}, w) \models p, p \in \mathcal{P}$$
, iff  $\pi(w, p) = T$ ;

• 
$$(\mathcal{M}, w) \models \neg \varphi \text{ iff } (\mathcal{M}, w) \not\models \varphi;$$

- $(\mathcal{M}, w) \models \varphi \land \psi$  iff  $(\mathcal{M}, w) \models \varphi$  and  $(\mathcal{M}, w) \models \psi$ ;
- $(\mathcal{M}, w) \models \Box \varphi$  iff for all w',  $w \mathcal{R}_a w'$  implies  $(\mathcal{M}, w') \models \varphi$ ;
- $(\mathcal{M}, w) \models \diamondsuit \varphi$  iff exists w',  $w\mathcal{R}_a w'$  and  $(\mathcal{M}, w') \models \varphi$ .

$$\mathcal{M} = \langle \mathcal{W}, \mathcal{R}_1, \dots, \mathcal{R}_n, \pi \rangle$$

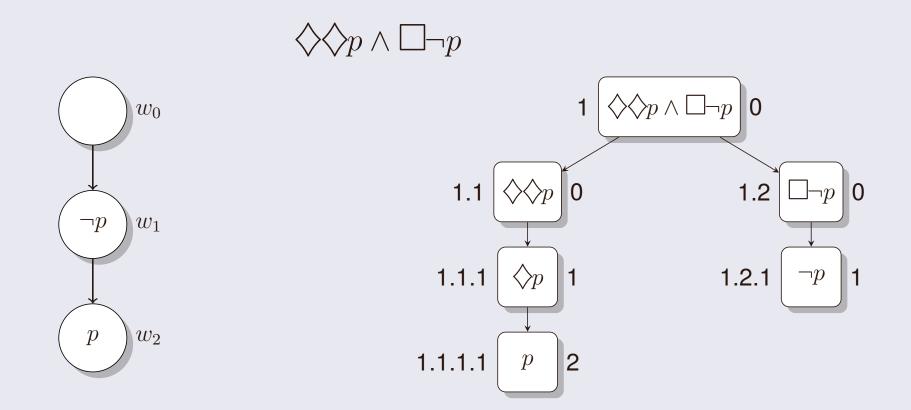
- A formula φ is locally satisfiable iff there is a model M and w ∈ W such that ⟨M, w⟩ ⊨ φ. In this case, we say that M satisfies φ, denoted by M ⊨<sub>L</sub> φ.
- A formula φ is globally satisfiable iff there is a model M and for all w ∈ W we have that ⟨M, w⟩ ⊨ φ. In this case, we say that M globally satisfies φ, denoted by M ⊨<sub>G</sub> φ.
- A formula φ is satisfiable under the global constraints
   Γ = {γ<sub>1</sub>,..., γ<sub>m</sub>} iff there is a model M such that M ⊨<sub>G</sub> Γ and there
   is w ∈ W such that ⟨M, w⟩ ⊨<sub>L</sub> φ.

$$\mathcal{M} = \langle \mathcal{W}, \mathcal{R}_1, \dots, \mathcal{R}_n, \pi \rangle$$

- A formula φ is locally satisfiable iff there is a model M and w ∈ W such that ⟨M, w⟩ ⊨ φ. In this case, we say that M satisfies φ, denoted by M ⊨<sub>L</sub> φ.
   PSPACE-complete [Ladner, 1977, Halpern and Moses, 1992]
- A formula φ is globally satisfiable iff there is a model M and for all w ∈ W we have that ⟨M, w⟩ ⊨ φ. In this case, we say that M globally satisfies φ, denoted by M ⊨<sub>G</sub> φ.
   EXPTIME-complete [Spaan, 1993]
- A formula φ is satisfiable under the global constraints
   Γ = {γ<sub>1</sub>,...,γ<sub>m</sub>} iff there is a model M such that M ⊨<sub>G</sub> Γ and there
   is w ∈ W such that ⟨M, w⟩ ⊨<sub>L</sub> φ.
   EXPTIME-complete [Spaan, 1993]

### **Local Reasoning**

• Nice properties: finite, tree-like models with height bounded by the modal depth/modal level of the formula.



C. Nalon

## Invariance Results

What properties are preserved by relations and operations. Two models are modally equivalent if they have the same theories, i.e. for  $\mathcal{M}_1$  and  $\mathcal{M}_2$ , and all formulae  $\varphi$ , we have that  $\mathcal{M}_1 \equiv \mathcal{M}_2$  if, and only if,

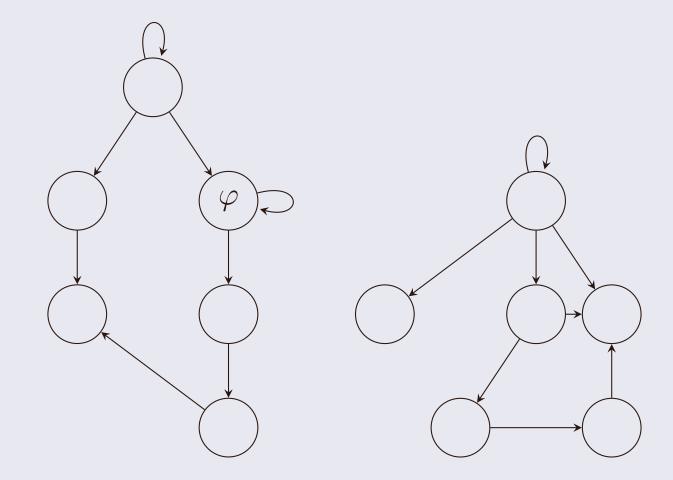
 $\mathcal{M}_1 \models \varphi$  if, and only if,  $\mathcal{M}_2 \models \varphi$ .

What properties are preserved by relations and operations. Two models are modally equivalent if they have the same theories, i.e. for  $\mathcal{M}_1$  and  $\mathcal{M}_2$ , and all formulae  $\varphi$ , we have that  $\mathcal{M}_1 \equiv \mathcal{M}_2$  if, and only if,

$$\mathcal{M}_1 \models \varphi$$
 if, and only if,  $\mathcal{M}_2 \models \varphi$ .

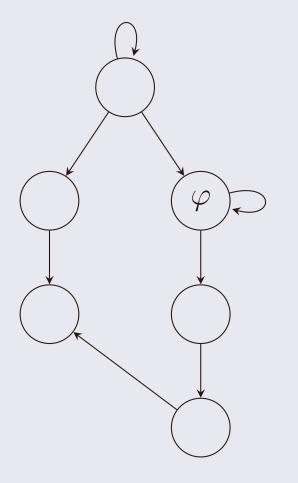
- disjoint unions
- generated submodels
- bounded morphisms
- *n*-bissimilarity

These results imply that if a formula is satisfiable, then it is satisfiable in a tree-like finite model.

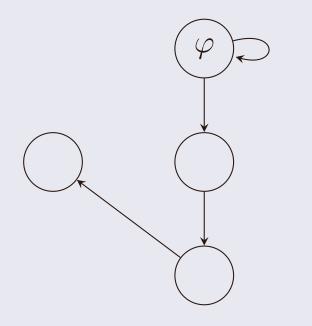


München, 17/10/2023

C. Nalon

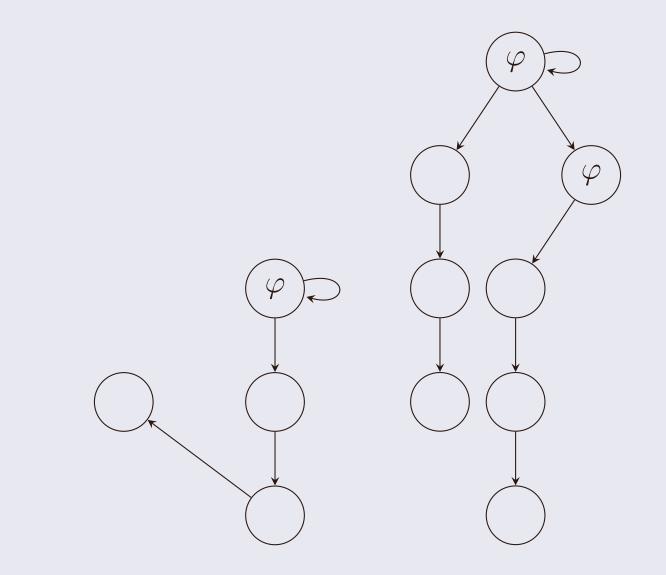


C. Nalon



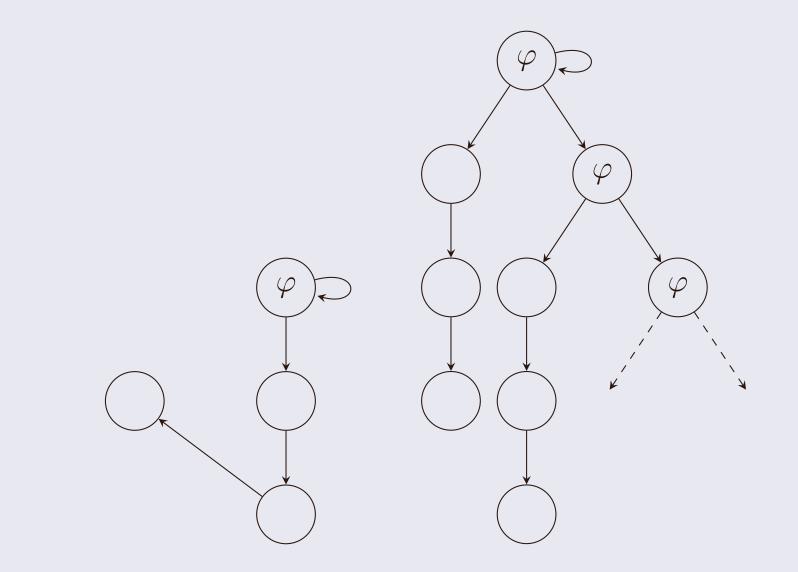
C. Nalon

München, 17/10/2023



München, 17/10/2023

C. Nalon



München, 17/10/2023

C. Nalon

### **Modal Depth**

**Definition 2.28** Let  $\varphi, \psi, \chi \in WFF$  be formulae. The modal depth (or degree) of  $\varphi$  is the maximum nesting of modal operator occurring in  $\varphi$ . Let  $deg : WFF \longrightarrow \mathbb{N}$  be a function defined as follows:

- $deg(\varphi) = 0$ , if  $\varphi \in \mathcal{P}$
- $deg(\perp) = 0$
- $deg(\neg \varphi) = deg(\varphi)$
- $deg(\underline{\varphi} \land \psi) = \max\{deg(\varphi), deg(\psi)\}$
- $deg(\Box \varphi) = 1 + deg(\varphi)$

Example, with boxes

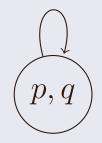
 $\Box(p \to q) \to (\Box p \to \Box q)$ 

$$\Box(p \to q) \to (\Box p \to \Box q)$$

The modal degree of this formula is one; thus, we only need to look at trees of height 1 (note, heights start at 0).

$$\Diamond (p \land \neg q) \lor \Diamond \neg p \lor \Box q$$

is satisfied at  $\mathcal{M}$ :

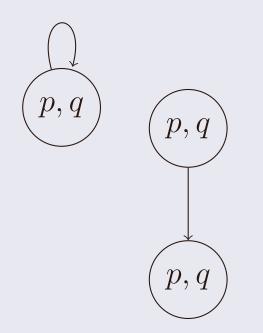


$$\Box(p \to q) \to (\Box p \to \Box q)$$

The modal degree of this formula is one; thus, we only need to look at trees of height 1 (note, heights start at 0).

$$\Diamond (p \land \neg q) \lor \Diamond \neg p \lor \Box q$$

is satisfied at  $\mathcal{M}$ :



The next sessions

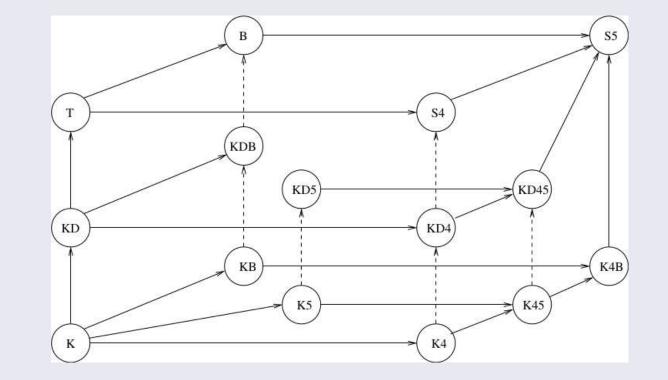
### **Calculi for Modal Logics**

- Axiomatic systems
- Tableaux

# **Some Other Usual Modal Logics**

Different restrictions on the accessibility relations  $\mathcal{R}_a$  define different modal logics:

- No restrictions:
   K<sub>n</sub>;
- Reflexive: KT<sub>n</sub>;
- Transitive:  $K4_n$ ;
- Euclidean:  $K5_n$ ;
- Serial:  $KD_n$ ;
- Symmetric: KB<sub>n</sub>;
- Reflexive and Transitive: S4<sub>n</sub>;
- Reflexive and Euclidean: S5<sub>n</sub>;



C. Nelon · · ·

[Fitting and Mendelsohn, 1998] Fitting, M. and Mendelsohn, R. L. (1998). First-Order Modal Logic. *Synthese Library*, 277, Kluwer Academic Publishers.

[Halpern and Moses, 1992] Halpern, J. Y. and Moses, Y. (1992). A guide to completeness and complexity for modal logics of knowledge and belief. *Artificial Intelligence*, 54(3):319–379.

[Ladner, 1977] Ladner, R. E. (1977). The computational complexity of provability in systems of modal propositional logic. *SIAM J. Comput.*, 6(3):467–480.

[Mints, 1990] Mints, G. (1990). Gentzen-type systems and resolution rules, part I: Propositional logic. *Lecture Notes in Computer Science*, 417:198–231.

[Spaan, 1993] Spaan, E. (1993). *Complexity of Modal Logics*. PhD thesis, University of Amsterdam. C. Nalon München, 17/10/2023

# Invariance in Detail

#### **Disjoint Unions**

Let  $\mathcal{M}_i = \langle \mathcal{W}_i, \mathcal{R}_i, \pi_i \rangle$ ,  $i \in \mathbb{N}$ , be Kripke structures. The disjoint union of  $\mathcal{M}_i$  is given by:

$$\biguplus_{i} \mathcal{M}_{i} = \langle \bigcup_{i} \mathcal{W}_{i}, \bigcup_{i} \mathcal{R}_{i}, \bigcup_{i} \pi_{i} \rangle$$

#### **Disjoint Unions**

Let  $\mathcal{M}_i = \langle \mathcal{W}_i, \mathcal{R}_i, \pi_i \rangle$ ,  $i \in \mathbb{N}$ , be Kripke structures. The disjoint union of  $\mathcal{M}_i$  is given by:

$$\biguplus_{i} \mathcal{M}_{i} = \langle \bigcup_{i} \mathcal{W}_{i}, \bigcup_{i} \mathcal{R}_{i}, \bigcup_{i} \pi_{i} \rangle$$

**Proposition 2.3** Modal satisfaction is invariant under disjoint unions:

$$\mathcal{M}_i \models \varphi$$
 if, and only if,  $\biguplus_i \mathcal{M}_i \models \varphi$ .

**Definition 2.5, submodel:** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  be Kripke structures. If

- $\mathcal{W}' \subseteq \mathcal{W}$ ,
- $\mathcal{R}' = \mathcal{R} \cap (\mathcal{W}' \times \mathcal{W}')$ , and
- $\pi'(w,p) = \pi(w,p)$ ,

for all  $w \in \mathcal{W}'$  and  $p \in \mathcal{P}$ , then  $\mathcal{M}'$  is a submodel of  $\mathcal{M}$ .

**Definition 2.5, generated submodel:** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  be a Kripke structure and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  a submodel of  $\mathcal{M}$ . We say that  $\mathcal{M}'$  is a generated submodel of  $\mathcal{M}$ , if:  $w \in \mathcal{W}'$  and  $w\mathcal{R}v$ , then  $v \in \mathcal{W}'$ .

**Definition 2.5, generated submodel by a set:** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  be a Kripke structure. A submodel generated by  $\mathcal{W}''$  is the smallest generated submodel  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  such that  $\mathcal{W}'' \subseteq \mathcal{W}'$ .

**Definition 2.5, rooted (or pointed) generated model:** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  be a Kripke structure. A rooted generated model, with root  $w \in \mathcal{W}$ , is a submodel generated by  $\{w\}$ .

C. Nalon

#### **Generated Submodels: Invariance Results**

**Proposition 2.6** Modal satisfaction is invariant under generated submodels, that is, if  $\mathcal{M}'$  is a generated submodel of  $\mathcal{M}$ , then:

```
\mathcal{M} \models \varphi if, and only if, \mathcal{M}' \models \varphi
```

for all  $\varphi \in \mathsf{WFF}$ .

#### Homomorphism

**Definition 2.7, homomorphism** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  be Kripke structures, and  $f : \mathcal{M} \longrightarrow \mathcal{M}'$  be a function. If:

- for all  $p \in \mathcal{P}$  and  $w \in \mathcal{W}$ , if  $\pi(w)(p) = true$ , then  $\pi'(f(w), p) = true$ ; and
- if  $w\mathcal{R}w'$ , then  $f(w)\mathcal{R}'f(w')$ ;

then, f is homomorphism from  $\mathcal{M}$  to  $\mathcal{M}'$ . Note that this is not enough show invariance.

#### Homomorphism

**Definition 2.8, strong homomorphism:** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  be Kripke structures, and  $f : \mathcal{M} \longrightarrow \mathcal{M}'$  be a function. If:

- for all  $p \in \mathcal{P}$  and  $w \in \mathcal{W}$ ,  $\pi(w)(p) = true$  if, and only if,  $\pi'(f(w), p) = true$ ; and
- $w\mathcal{R}w'$  if, and only if,  $f(w)\mathcal{R}'f(w')$ ;

then, f is strong homomorphism from  $\mathcal{M}$  to  $\mathcal{M}'$ .

**Definition 2.8, embedding:** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  be Kripke structures, and  $f : \mathcal{M} \longrightarrow \mathcal{M}'$  be a strong homomorphism. If *f* is injective, then *f* is an embedding.

**Definition 2.8, isomorphism:** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  be Kripke structures, and  $f : \mathcal{M} \longrightarrow \mathcal{M}'$  be a strong homomorphism. If *f* is bijective, then *f* is an isomorphism.

#### **Invariance Results**

**Proposition 2.9** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  be Kripke structures, and  $f : \mathcal{M} \longrightarrow \mathcal{M}'$  be a function. The following holds:

- 1. if *f* is a surjective strong homomorphism with f(w) = w', then *w* and *w'* are modally equivalent.
- 2. if  $\mathcal{M}$  and  $\mathcal{M}'$  are isomorphic, then they are modally equivalent.

## **Bounded Morphism**

**Definition 2.10, bounded morphism** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  be Kripke structures, and  $f : \mathcal{M} \longrightarrow \mathcal{M}'$  a function. If:

1. w and f(w) satisfy the same propositional symbols; that is, for all  $w \in \mathcal{W}$  and  $p \in \mathcal{P}$ :

$$\pi(w,p) = \pi'(f(w),p)$$

- 2. for all  $w, w' \in \mathcal{W}$ , if  $w\mathcal{R}w'$ , then  $f(w)\mathcal{R}'f(w')$ ;
- 3. if  $f(w)\mathcal{R}'w'$ , then there is  $w'' \in \mathcal{W}$  such that  $w\mathcal{R}w''$  and f(w'') = w' (back condition);

then f is a bounded morphism from  $\mathcal{M}$  to  $\mathcal{M}'$ .

**Definition 2.10, bounded morphic image** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  be Kripke structures, and  $f : \mathcal{M} \longrightarrow \mathcal{M}'$  a bounded morphism from  $\mathcal{M}$  to  $\mathcal{M}'$ . If f is surjective, then  $\mathcal{M}'$  is a bounded morphic image of  $\mathcal{M}$ .

#### **Invariance Results**

**Proposition 2.14** Modal satisfaction is invariant under bounded morphisms.

Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  be Kripke structures, and  $f : \mathcal{M} \longrightarrow \mathcal{M}'$  a bounded morphism from  $\mathcal{M}$  to  $\mathcal{M}'$ . Then,

 $\mathcal{M} \models \varphi$  if, and only if,  $\mathcal{M}' \models \varphi$ 

for all  $\varphi \in \mathsf{WFF}$ .

Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  be a Kripke structure.  $\mathcal{M}$  is tree-like if the graph  $\langle \mathcal{W}, \mathcal{R} \rangle$  is a tree (a directed acyclic graph). **Proposition 2.15** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  be a Kripke structure. Then, there is  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  that is tree-like and a bounded morphic image of  $\mathcal{M}'$ .

From the previous results, we have that all modal formulae that are satisfiable are satisfiable in a tree-like model.

#### **Bissimulations**

**Definition 2.16, bissimulations** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  be Kripke structures, and  $\mathcal{Z} \subseteq \mathcal{M} \times \mathcal{M}'$  a relation. If:

1. if wZw', then for all  $w \in W$  and  $p \in P$ :

$$\pi(w,p) = \pi'(w',p)$$

- 2. if wZw' and wRw'', then there is  $w''' \in W'$  such that w''Zw''' and w'R'w''' (forth condition);
- 3. if wZw' and  $w'\mathcal{R}'w'''$ , then there is  $w'' \in \mathcal{W}$  such that w''Zw''' and  $w\mathcal{R}w''$  (back condition);

then  $\mathcal{Z}$  is a bissimulation between  $\mathcal{M}, w$  and  $\mathcal{M}', w'$ .

**Proposition 2.19** Let  $\mathcal{M}$ ,  $\mathcal{M}'$ , and  $\mathcal{M}_i$  ( $i \in \mathbb{N}$ ) be Kripke structures. The following holds:

- 1. if  $\mathcal{M}$  and  $\mathcal{M}'$  are modally equivalent, then they are bissimilar.
- 2. for all  $i, w \in \mathcal{M}_i, \mathcal{M}_i, w$  is bissimilar to  $\biguplus_i \mathcal{M}_i, w$ .
- 3. if  $\mathcal{M}'$  is a generated submodel of  $\mathcal{M}$ , then  $\mathcal{M}', w$  is bissimilar to  $\mathcal{M}, w$ , for all  $w \in \mathcal{M}'$ .
- 4. if  $\mathcal{M}'$  is a bounded morphic image of  $\mathcal{M}$ , then  $\mathcal{M}', w$  is bissimilar to  $\mathcal{M}, w$ , for all  $w \in \mathcal{M}'$ .

**Theorem 2.20** Let  $\mathcal{M}$  and  $\mathcal{M}'$  be Kripke structures. Then, for all  $w \in \mathcal{W}$  and  $w' \in \mathcal{W}'$ ,

if w and w' are bissimilar, then they are modally equivalent.

Note: the converse is not true in general; however, if the relations are finite, then the bissimilarity and modal equivalence coincide (Theorem 2.24, Hennessy-Milner Theorem).

## **Finite Models**

**Definition 2.7** Let  $\mathfrak{M}$  be a class of Kripke structures and  $\mathcal{L}$  a logical language. If, for all formulae  $\varphi \in \mathsf{WFF}_{\mathcal{L}}$ :

if  $\varphi$  is satisfiable, then there is  $\mathcal{M} \in \mathfrak{M}$ ,  $\mathcal{M}$  finite, such that  $\mathcal{M} \models \varphi$ ,

then  $\mathcal{L}$  has the finite model property with respect to  $\mathfrak{M}$ .

## **Modal Depth**

**Definition 2.28** Let  $\varphi, \psi, \chi \in WFF$  be formulae. The modal depth (or degree) of  $\varphi$  is the maximum nesting of modal operator occurring in  $\varphi$ . Let  $deg : WFF \longrightarrow \mathbb{N}$  be a function defined as follows:

- $deg(\varphi) = 0$ , if  $\varphi \in \mathcal{P}$
- $deg(\perp) = 0$
- $deg(\neg \varphi) = deg(\varphi)$
- $deg(\varphi \land \psi) = \max\{deg(\varphi), deg(\psi)\}$
- $deg(\Box \varphi) = 1 + deg(\varphi)$

# **Proposition 2.29** Assume $\mathcal{P}$ is finite.

- 1. For all  $n \in \mathbb{N}$ , there are only finitely many formulae of degree at most n (up to logical equivalence);
- 2. For all  $n \in \mathbb{N}$ , Kripke structures  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$ , and  $w \in \mathcal{W}$ ,  $\{\varphi \mid \mathcal{M}, w \models \varphi, deg(\varphi) \leq n\}$  is finite (up to logical equivalence).

## *n*-bissimilarity

**Definition 2.30** Let  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$  and  $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \pi' \rangle$  be Kripke structures with  $w \in \mathcal{W}$  and  $w' \in \mathcal{W}'$ . Let  $\mathcal{Z}_i \subseteq \mathcal{W} \times \mathcal{W}'$ ,  $i \leq n, n \in \mathbb{N}$ , be relations such that  $\mathcal{Z}_i \subseteq \mathcal{Z}_{i-1}$ . If:

- 1.  $w \mathcal{Z}_n w'$
- 2. for all  $w \in \mathcal{W}$ , if  $w\mathcal{Z}_0 w'$ , then for all  $p \in \mathcal{P}$ :

$$\pi(w,p) = \pi'(w',p)$$

- 3. for all  $w, w' \in \mathcal{W}$ , if  $w\mathcal{Z}_{i+1}w'$  and  $w\mathcal{R}w''$ , then there exists w''' with  $w'\mathcal{R}'w'''$  and  $w''\mathcal{Z}_iw'''$ ;
- 4. for all  $w, w' \in \mathcal{W}$ , if  $w\mathcal{Z}_{i+1}w'$  and  $w'\mathcal{R}'w'''$ , then there exists w'' with  $w\mathcal{R}w''$  and  $w''\mathcal{Z}_iw'''$ ;

then  $\mathcal{M}, w$  and  $\mathcal{M}', w'$  are *n*-bissimilar.

**Proposition 2.31** *n*-bissimilarity for all *n* and modal equivalence coincide.

 $\mathcal{M}, w$  and  $\mathcal{M}', w'$  are *n*-bissimilar if, and only if,

for all  $\varphi$ ,  $deg(\varphi) \leq n$  and  $\mathcal{M}, w \models \varphi$  if, and only if,  $\mathcal{M}', w' \models \varphi$ .

**Definition 2.32, height of a tree-like model** It is defined as the height of trees.

**Definition 2.32, restriction to a particular height** k: Just take  $\mathcal{W}'$  to be the set of worlds that occurr up to the height k.

**Lemma 2.33** Worlds w in the model whose height is restricted by k are l-bissimilar to those in the original model, where l = k - height(w).

Note: *l*-bissimilarity says that we are considering the formulae with degree at most *l*, that is, at the height k - height(w) we are considering modal formulae with degree at most k - height(w). Taking *k* to be the degree of a formula  $\varphi$ , this says that the subformulae of  $\varphi$  are satisfied at the height they occur in the tree.

## Continued

We take a formula that is satisfiable and show that it is satisfiable in a model that is restricted by some height k.

- 1. Take the tree-like model with root *w* that satisfies the formula (Proposition 2.6, the unravelling construction, bounded morphism).
- Take the model restricted by k, the degree of the formula (Lemma 2.33).
- 3. The construction basically divides the tree in layers (corresponding to the sets of worlds that are at some height)

(a) 
$$S_0 = \{w\}$$
  
(b)  $S_{i+1} = \{w' \mid w \in S_i, w \models \diamondsuit \psi, deg(\diamondsuit \psi) = i, w' \models \psi, \}$ 

By Propositon 2.29, there are only finitely many formulae of the form  $\Diamond \psi$  (up to equivalence) whose degree is *i*.

# **Filtrations**

- 1. It works on the closed set of subformulae  $\Sigma$ .
- 2. Defines equivalence classes for worlds based on the formulae in  $\Sigma$ .
- 3. Construct the model using those equivalence classes and making sure that diamonds are satisfied.

# Filtrations

- 1. It works on the closed set of subformulae  $\Sigma$ .
- 2. Defines equivalence classes for worlds based on the formulae in  $\Sigma$ .
- 3. Construct the model using those equivalence classes and making sure that diamonds are satisfied.

Example:

$$\mathcal{M} = \langle \mathbb{N}, \{(0,1), (0,2), (1,3)\} \cup \{(n,n+1) \mid n \ge 2\}, \pi \rangle$$

where  $\pi(w, p) = true$  iff  $w \neq 0$  and  $\pi(w, q) = true$  iff w = 2. Take  $\Sigma = \{p, \diamondsuit p\}$ . There are only two equivalence classes based on  $\Sigma$  for this particular model: those that satisfy  $\{p\}$  and those that don't.

 $\mathcal{M}' = \langle \{ |0|, |1| \}, \{ (|0|, |1|), (|1|, |1|) \}, \pi' \rangle$ 

where  $\pi(w, p) = true$  iff w = |1|.

München, 17/10/2023

C. Nalon

**Proposition 2.38** The construction of the filtration is finite: it has the size of the powerset of  $\Sigma$ .

**Theorem 2.39** Satisfiability of modal formula is preserved under filtration.

Smallest and largest filtrations can be obtained by restricting the construction of the relation in the filtered model (Lemma 2.40):

- 1.  $|w|\mathcal{R}^s|w'|$  iff exists  $w'' \in |w|$ ,  $w''' \in |w'|$  and  $w''\mathcal{R}w'''$ .
- 2.  $|w|\mathcal{R}^{l}|w'|$  iff for all  $\Diamond \varphi$  in  $\Sigma$ , if  $\mathcal{M}, w' \models \psi$ , then  $\mathcal{M}, w \models \Diamond \varphi$ .

**Theorem 2.41** If a formula is satisfiable, it is satisfiable in a finite model.

Proof: using a filtration, the size of the model is at most exponential in the number of subformulae.